Advertisement

Pharmaceutical Chemistry Journal

, Volume 44, Issue 3, pp 151–156 | Cite as

Effects of technical parameters on the physicochemical properties of rifampicin-containing polylactide nanoparticles

  • O. O. Maksimenko
  • L. V. Vanchugova
  • E. V. Shipulo
  • G. A. Shandryuk
  • G. N. Bondarenko
  • S. É. Gel’perina
  • V. I. Shvets
Article

The aim of the present work was to assess the influences of the parameters of the process of preparing polylactide-based nanosomal medicinal formulations of rifampicin (Rif) on nanoparticle size, the level of Rif sorption, and the kinetics of Rif release in vitro. The most effective Rif sorption in nanoparticles (up to 90%) was obtained using polylactides with additional terminal carboxyl groups. An increase in the initial Rif concentration in the organic phase from 1 to 5 mg/ml led to some decrease in the extent of sorption (from 89% to 76%) though it had no significant effect on the sizes of the resulting nanoparticles (190 – 260 nm). The rate of Rif release could be controlled by altering the composition of the polymer matrix of the nanoparticles; the presence of additional terminal carboxyl groups in polylactides gave slower antibiotic release, resulting from tighter interaction with the polymer matrix.

Key words

Nanoparticles polylactides rifampicin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Pinto-Alphandary, A. Andremont and P. Couvreur, Int. J. Antimicrob. Agents, 13(3), 155 – 168 (2000).CrossRefPubMedGoogle Scholar
  2. 2.
    R. Pandey, S. Sharma and G. K. Khuller, J. Antimicrob. Chemother., 57(6) 1146 – 1152 (2006).CrossRefPubMedGoogle Scholar
  3. 3.
    S. Gelperina, K. Kisich, M. D. Iseman, et al., Am. J. Respir. Crit. Care Med., 172(12), 1487 – 1490 (2005).CrossRefPubMedGoogle Scholar
  4. 4.
    K. O. Kisich, S. Gelperina, M. P. Higgins, et al., Int. J. Pharm., 345(1 – 2), 154 – 162 (2007).CrossRefPubMedGoogle Scholar
  5. 5.
    F. Mohamed and C. F. van der Walle, J. Pharm. Sci., 97(1), 71 – 87 (2008).CrossRefPubMedGoogle Scholar
  6. 6.
    I. Bala, S. Hariharan, and M. N. Kumar, Crit. Rev. Ther. Drug Carrier Syst., 21(5), 387 – 422 (2004).CrossRefPubMedGoogle Scholar
  7. 7.
    C. E. Astete and C. M. Sabliov, J. Biomater. Sci. Polym. Ed., 17(3), 247 – 289 (2006).Google Scholar
  8. 8.
    F. Fawaz, M. Guyot, A. M. Lagueny, et al., Int. J. Pharm., 154(2), 191 – 203 (1997).CrossRefGoogle Scholar
  9. 9.
    K. Yoncheva, J. Vandervoort, and A. Ludwig, J. Microencapsulation, 20(4), 449 – 458 (2003).CrossRefPubMedGoogle Scholar
  10. 10.
    M. Ueda, J. Kreuter, J. Microencapsulation, 14(5), 593 – 605 (1997).CrossRefPubMedGoogle Scholar
  11. 11.
    D. T. Birnbaum, J. D. Kosmala, and L. Brannon-Peppas, J. Nanoparticle Res., 2(2), 173 – 181 (2000).CrossRefGoogle Scholar
  12. 12.
    G. Ruan, J.-K. Ng, and S.-S. Feng, J. Microencapsulation, 21(4), 399 – 412 (2004).CrossRefPubMedGoogle Scholar
  13. 13.
    A. Lamprecht, N. Ubrich, M. H. Perez, et al., Int. J. Pharm., 196(2), 177 – 182 (2000).CrossRefPubMedGoogle Scholar
  14. 14.
    T. T. Mariappan, N. N. Sharda, and S. Singh, Ind. J. Pharm. Sci., 69(2), 197 – 201 (2007).CrossRefGoogle Scholar
  15. 15.
    Merck Index (1996), p. 1414.Google Scholar
  16. 16.
    J. Siepmann, N. Faisant, J. Akiki, et al., J. Control Rel., 96(1), 123 – 134 (2004).CrossRefGoogle Scholar
  17. 17.
    D. Bell, F. Ritchie, D. F. Bain, et al., Eur. J. Pharm. Sci., 7(1), 57 – 65 (1998).CrossRefGoogle Scholar
  18. 18.
    D. T. Birnbaum and L. Brannon-Peppas, J. Biomater. Sci. Polymer Edn, 14(1), pp. 87 – 102 (2003).CrossRefGoogle Scholar
  19. 19.
    M. Dunne, O. I. Corrigan, and Z. Ramtoola, Biomaterials, 21(16), 1659 – 1668 (2000).CrossRefPubMedGoogle Scholar
  20. 20.
    E. A. Oganesyan, A. P. Bud’ko, O. O. Maksimenko, et al., Antibiot. Khimioterap., 50(8 – 9), 15 – 19 (2005).Google Scholar
  21. 21.
    J. Siepmann and F. Göpferich, Adv. Drug. Deliv. Rev., 48(2 – 3), 229 – 247 (2001).CrossRefPubMedGoogle Scholar
  22. 22.
    N. Faisant, J. Siepmann, and J. P. Benoit, Eur. J. Pharm. Sci., 15(4), 355 – 366 (2002).CrossRefPubMedGoogle Scholar
  23. 23.
    B. Magenheim and S. Benita, S. T. P. Pharma Sci., 1(4), 221 – 241 (1991).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • O. O. Maksimenko
    • 1
    • 3
  • L. V. Vanchugova
    • 1
    • 3
  • E. V. Shipulo
    • 1
    • 3
  • G. A. Shandryuk
    • 1
    • 3
  • G. N. Bondarenko
    • 2
    • 3
  • S. É. Gel’perina
    • 1
    • 3
  • V. I. Shvets
    • 2
    • 3
  1. 1.OOO NPK NanosistemaMoscowRussia
  2. 2.A. V. Topchiev Institute of Oil Chemistry SynthesisRussian Academy of SciencesMoscowRussia
  3. 3.M. V. Lomonosov Moscow Academy of Fine Chemical TechnologyMoscowRussia

Personalised recommendations