Flowers of marigold (Tagetes) species as a source of xanthophylls

  • V. I. Deineka
  • V. N. Sorokopudov
  • L. A. Deineka
  • M. Yu. Tret’yakov
Article

Abstract

The accumulation of xanthophylls in flowers of marigold (Tagetes) species cultivated under conditions of the Belgorod region has been studied. Five cultivars representing three marigold species were investigated, including T. erecta (Rhodes and Orange Snow cultivars), T. patula (Bolero and Harmony) and T. tenuifolia (Red Gem). The overall xanthophyll content in the petals of flowers has been determined spectrophotometrically, while the composition of lutein diesters in each Tagetes species as well as the composition of anthocyanins in the flowers with claret spots have been studied by reverse phase HPLC. It is established that the total content of xanthophylls and their composition are close to the published data for analogous species growing in other regions of the world. It is shown that more than 90% of xanthophylls in flowers are retained upon drying and the content of lutein diesters in the dry material can exceed 15 mg/g.

References

  1. 1.
    V. M. Berezovskii, The Chemistry of Vitamins [in Russian], Pishchevaya Prom-st’, Moscow (1973), pp. 187–201.Google Scholar
  2. 2.
    M. Mozaffarieh, S. Sacu, and A. Wedrich, Nutr. J., 2, 20–27 (2003)PubMedCrossRefGoogle Scholar
  3. 3.
    T. L. Bosma, J. M. Dole, and N. O. Maness, Crop. Sci., 43, 2118–2124 (2003).Google Scholar
  4. 4.
    W. L. Hadden, R. H. Watkins, L. W. Levy, et al., J. Agric. Food Chem., 47, 4189–4194 (1999).PubMedCrossRefGoogle Scholar
  5. 5.
    E. Barzana, D. Rubio, R. I. Santamaria, et al. J. Agric. Food Chem., 50, 4491–4496 (2002).PubMedCrossRefGoogle Scholar
  6. 6.
    J. D. L. Rivas, J. Chromatogr., 464, 442–447 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    E. Santos-Bocanegra, X. Ospina-Osorio, and E. O. Oviedo-Rondón, Int. J. Poultry Sci., 3, 685–689 (2004).CrossRefGoogle Scholar
  8. 8.
    J. Jacob, R. Miles, Facksheet PS-51, (2000) http://edis.ifas.ufl.edu.
  9. 9.
    J. A. Soul, in: New Crop, J. Janick and J. E. Simon (eds.), Wiley, New York (1993), pp. 649–654.Google Scholar
  10. 10.
    D. B. Rodrigues-Amaya, A Guide to Carotenoid Analysis in Foods, ILSI Press, Washington (2001), p. 15.Google Scholar
  11. 11.
    M. M. Giusti and R. E. Wrolstad, in: Current Protocols in Food Analytical Chemistry, Unit F2.2, S. King, M. Gates, and L. Scalettar (eds.), John Wiley and Sons, New York (2000).Google Scholar
  12. 12.
    V. I. Deineka and A. M. Grigor’ev, Zh. Anal. Khim., 59(3), 305–309 (2004).Google Scholar
  13. 13.
    V. I. Deineka, V. N. Sorokopudov, L. A. Deineka, et al., Chem. Nat. Comp., 41(2), 162–164 (2005).CrossRefGoogle Scholar
  14. 14.
    V. I. Deineka, V. M. Staroverov, G. M. Fofanov, and L. N. Balyatinskaya, Khim.-Farm. Zh., 36(7), 44–47 (2002).Google Scholar
  15. 15.
    P. E. Bowen, S. M. Herbst-Espinosa, E. A. Hussain, and M. Stacewicz-Sapuntzakis, J. Nutr., 132, 3668–3673 (2002).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. I. Deineka
    • 1
  • V. N. Sorokopudov
    • 1
  • L. A. Deineka
    • 1
  • M. Yu. Tret’yakov
    • 1
  1. 1.Belgorod State UniversityBelgorodRussia

Personalised recommendations