Advertisement

Dynamics of Gas Heating in the Afterglow of Pulsed CO2 and CO2–N2 Glow Discharges at Low Pressure

  • T. SilvaEmail author
  • M. Grofulović
  • L. Terraz
  • C. D. Pintassilgo
  • V. Guerra
Original Paper

Abstract

The time-dependent evolution of the energy transfer into gas heating in the afterglow of pulsed CO2 and CO2–N2 glow discharges produced in cylindrical tubes at low pressures (1–5 Torr) is theoretically investigated, by developing a self-consistent model that couples the time-dependent gas thermal balance equation with the vibrational kinetics. The modelling predictions are in good agreement with recently published experimental data on gas temperature, obtained via time-resolved in situ Fourier transform infrared spectroscopy. The cooling of the gas in the afterglow is found to be strongly dependent on the thermal conductivity and the wall temperature. It is verified that wall and volume deactivation of CO2 vibrationally excited species influences the gas heating along the afterglow, in different proportions depending on the pressure of the gas. The time-resolved contributions of each of these cooling and heating mechanisms are discussed in detail. The new results bring an additional validation of a set of mechanisms and rate coefficients for vibrationally-energy transfers previously proposed.

Keywords

CO2 plasmas Low-temperature plasma Kinetic modelling Gas temperature Gas heating mechanisms 

Notes

Acknowledgements

This work was partially supported by the Portuguese FCT, under Projects UID/FIS/50010/2019 and PTDC/FIS-PLA/1420/2014 (PREMiERE), and Grant PD/BD/105884/2014 (PD-F APPLAuSE).

References

  1. 1.
    Goede APH, van de Sanden R (2016) CO2-neutral fuels. Europhys News 47(3):22–26CrossRefGoogle Scholar
  2. 2.
    Bogaerts A, Neyts EC (2018) Plasma technology: an emerging technology for energy storage. ACS Energy Lett 3:1013–1027CrossRefGoogle Scholar
  3. 3.
    Snockx R, Bogarts A (2017) Plasma technology—a novel solution for CO2 conversion? Chem Soc Rev 46:5805–5863CrossRefGoogle Scholar
  4. 4.
    Kozák T, Bogaerts A (2014) Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model. Plasma Sources Sci Technol 23:1–17CrossRefGoogle Scholar
  5. 5.
    Capitelli M, Colonna G, Ammando GD, Pietanza LD (2017) Self-consistent time dependent vibrational and free electron kinetics for CO2 dissociation and ionization in cold plasmas. Plasma Sources Sci Technol 26:1–17Google Scholar
  6. 6.
    Berthelot A, Bogaerts A (2016) Modeling of plasma-based CO2 conversion: lumping of the vibrational levels. Plasma Sources Sci Technol 25:1–22CrossRefGoogle Scholar
  7. 7.
    Diomede P, Van De Sanden MCM, Longo S (2017) Insight into CO2 dissociation in plasmas from numerical solution of a vibrational diffusion equation. J Phys Chem C.  https://doi.org/10.1021/acs.jpcc.7b04896 CrossRefGoogle Scholar
  8. 8.
    Silva T, Grofulovic M, Terraz L, Pintassilgo CD, Guerra V (2018) Modelling the input and relaxation of vibrational energy in CO2 plasmas. J Phys D Appl Phys 54:464001CrossRefGoogle Scholar
  9. 9.
    Silva T, Grofulovic M, Klarenaar BLM, Morillo-Candas AS, Guaitella O, Engeln R, Pintassilgo CDP, Guerra V (2018) Kinetic study of CO2 plasmas under non-equilibrtium conditions. I. Input of vibrational energy. Plasma Sources Sci Technol 27:115009CrossRefGoogle Scholar
  10. 10.
    Grofulovic M, Silva T, Klarenaar BLM, Morillo-Candas AS, Guaitella O, Engeln R, Pintassilgo CDP, Guerra V (2018) Kinetic study of CO2 plasmas under non-equilibrtium conditions. II. Relaxation of vibrational energy. Plasma Sources Sci Technol 27:015019CrossRefGoogle Scholar
  11. 11.
    Terraz L, Silva T, Morillo-Candas AS, Guaitella O, Tejero-del-Caz A, Alves LL, Guerra V (2019) Influence of N2 on the CO2 vibrational distribution function and dissociation yield in non-equilibrium plasmas. J Phys D Appl Phys 53:094002CrossRefGoogle Scholar
  12. 12.
    Grofulovic M, Alves LL, Guerra V (2016) Electron-neutral scattering cross sections for CO2: a complete and consistent set and assessment of dissociaiton. J Phys D Appl Phys 49:395207CrossRefGoogle Scholar
  13. 13.
    Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Bogaerts A, Reniers F (2016) The influence of power and frequency on the filamentary behavior of a flowing DBD—application to the splitting of CO2. Plasma Sources Sci Technol 25:25013CrossRefGoogle Scholar
  14. 14.
    Pinhão NP, Janeco A, Branco JB (2011) Influence on helium on the concersion of methane and carbon dioxide in a dielectric barrier discharge. Plasma Chem Plasma Process 31:427–439CrossRefGoogle Scholar
  15. 15.
    Scapinello M, Martini LM, Dilecce G, Tosi P (2016) Conversion of CH4/CO2 by a nonsecond repetitively pulsed discharge. J Phys D Appl Phys 49:075602CrossRefGoogle Scholar
  16. 16.
    Silva T, Britun N, Godfroid T, Snyders R (2014) Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Sci Technol 23:25009CrossRefGoogle Scholar
  17. 17.
    Silva T, Britun N, Godfroid T, Mullen J, Snyders R (2016) Study of Ar and Ar–CO2 microwave surfaguide discharges by optical spectroscopy. J Appl Phys 119:173302CrossRefGoogle Scholar
  18. 18.
    Chen G, Silva T, Georgieva V, Godfroid T, Britun N, Snyders R, Delplancke-Ogletree MP (2015) Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge Int. J Hydrog Energy 40:3789–3796CrossRefGoogle Scholar
  19. 19.
    Klarenaar BLM, Engeln R, van den Bekerom DCM, van de Sanden MCM, Morillo-Candas AS, Guaitella O (2017) Time evolution of vibrational temperatures in a CO2 glow discharge measured with infrared absorption spectroscopy. Exp Methods Plasma Sources Sci Technol 26:1–11Google Scholar
  20. 20.
    Morillo-Candas AS, Drag C, Booth JP, Dias TC, Guerra V, Guaitella O (2019) Oxygen atom kinetics in CO2 plasmas ignited in a DC glow discharge. Plasma Sources Sci Technol 28:075010CrossRefGoogle Scholar
  21. 21.
    Spencer LF, Gallimore A (2011) Efficiency of CO2 dissocaition ina radio-frequency discharge. Plasma Chem Plasma Process 31:79–89CrossRefGoogle Scholar
  22. 22.
    Nunnally T, Gutsol K, Rabinovich A, Fridman A, Futsol A, Kemoun A (2011) Dissociation of CO2 in a low current gliding arc plasmatron. J Phys D Appl Phys 44:274009CrossRefGoogle Scholar
  23. 23.
    Heijkers S, Snoeckx R, Kozák T, Silva T, Godfroid T, Britun N, Snyders R, Bogaerts A (2015) CO2 conversion in a microwave plasma reactor in the presence of N2: modelling and experimental validation. J Phys Chem C 119:12815–128828CrossRefGoogle Scholar
  24. 24.
    Heijkers S, Martini LC, Dilecce G, Tosi P, Bogaerts A (2019) Nanosecond pulsed dicharge for CO2 conversion: kinetic modeling to elucidate the chemistry and improve the performance. J Phys Chem C 123:12104–12116CrossRefGoogle Scholar
  25. 25.
    Guerra V, Silva T, Ogloblina P, Grofulovic M, Terraz L, Lino da Silva ML, Pintassilgo CD, Alves LL (2017) The case for in situ resource utilisation for oxygen production on Mars by non-equilibrium plasmas. Plasma Sour Sci Technol 26:11LT01CrossRefGoogle Scholar
  26. 26.
    Premathilake D, Outlaw RA, Quinlan RA, Byvik CE (2018) Oxygen generation by carbon dioxide glow discharge and separation by permeation through ultrathin silver membrans. Earth Space Sci 6:1–8Google Scholar
  27. 27.
    Armenise I, Kustova EV (2013) State-to-state models for CO2 molecules: from the theory to an application to hypersonic boundary layers. Chem Phys 415:269–281CrossRefGoogle Scholar
  28. 28.
    Chen G et al (2019) A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ Ruddlesden–Popper membrane for oxygen separation. Front Chem Sci Eng.  https://doi.org/10.1007/s11705-019-1886-0 CrossRefGoogle Scholar
  29. 29.
    Koizumi K, Boero M, Shigeta Y, Oshiyama A (2013) Atom-scale reaction pathways and free-energy landscapes in oxygen plasma etching of graphene. J Phys Chem Lett 4:1592–1596PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Adamovich et al (2017) The 2017 plasma roadmap: low temperature plasma science and technology. J Phys D Appl Phys 50:323001CrossRefGoogle Scholar
  31. 31.
    van Rooij GJ, Akse HN, Bongers WA, van de Sanden MCM (2018) Plasma for electrification of chemical industry: a case study on CO2 reduction. Plasma Phys Control Fusion 60:014019CrossRefGoogle Scholar
  32. 32.
    Morillo-Candas AS, Silva T, Klarenaar BLM, Grofulovic M, Guerra V, Guaitella O (2019) Electron impact dissociation of CO2. Plasma Sources Sci Technol.  https://doi.org/10.1088/1361-6595/ab6075 CrossRefGoogle Scholar
  33. 33.
    Kotov V, Koelman PMJ (2019) Plug flow reactor model of the plasma chemical conversion of CO2. Plasma Sources Sci Technol 28:095002CrossRefGoogle Scholar
  34. 34.
    Pintassilgo CD, Guerra V, Guaitella O, Rousseau A (2014) Study of gas heating mechanisms in milisecond pulsed discharges and afterglows in air at low pressures. Plasma Sources Sci Technol 23:025006CrossRefGoogle Scholar
  35. 35.
    Guerra V, Tatarova E, Dias FM, Ferreira CM (2002) On the self-consistent modeling of a traveling wave sustained nitrogen discharges. J Appl Phys 91:2648CrossRefGoogle Scholar
  36. 36.
    Hanley HJM, Ely JF (1973) The viscosity and thermal conductivity coefficients of dilute nitrogen and oxygen. J Phys Chem Ref Data 2:735CrossRefGoogle Scholar
  37. 37.
    Vesovic et al (1990) The transport properties of carbon dioxide. J Phys Chem Ref Data 19:763CrossRefGoogle Scholar
  38. 38.
    Chase MW (1998) NIST-JANAF thermochemical tables. J Phys Chem Ref Data 9:1–1951Google Scholar
  39. 39.
    Joly V, Roblin A (1999) Vibrational relaxation of CO2(m,nl,p) in a CO2–N2 mixture. Part 1: survey available data. Aerosp Sci Technol 4:229–238CrossRefGoogle Scholar
  40. 40.
    Blauer JA, Nickerson GR (1973) A survey of vibrational relaxation rate data for processes important to CO2–N2–H2O infrared plume radiatiion Technical Report. AFRPL-TR-73-57 Ultrasystems, IncGoogle Scholar
  41. 41.
    Kutasi K, Guerra V, Sá P (2010) Theoretical insight into Ar–O2 surface-wave microwave discharges. J Phys D Appl Phys 43:175201CrossRefGoogle Scholar
  42. 42.
    Hirschfelder JO, Curtis CF, Bird RB (1964) Molecular theory of gases and liquids. Wiley, New YorkGoogle Scholar
  43. 43.
    Black G, Wise H, Schechter S, Sharpless RL (1974) Measurements of vibrationally exctited molecules by raman scattering. J Phys D Appl Phys 60:3526–3536Google Scholar
  44. 44.
    Hiskes JR, Karo AM (1984) Generation of negative ions in tandem high density hydrogen discharges. J Phys D Appl Phys 56:1927–1938CrossRefGoogle Scholar
  45. 45.
    Karo AM, Hiskes JR, Hardy RJ (1984) Vibrational relaxation in H2 molecules by wall collisions: applications to negative ion source processes. J Vac Sci Technol A 3:1222–1228CrossRefGoogle Scholar
  46. 46.
    Marinov D, Guerra V, Guaitella O, Booth JP, Rousseau A (2013) Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surface. Plasma Sources Sci Technol 22:055018CrossRefGoogle Scholar
  47. 47.
    Billing GD, Fisher ER (1979) VV and VT rate coefficients in N2 by a quantum-classical model. Chem Phys 43:395–401CrossRefGoogle Scholar
  48. 48.
    Taylor RL, Bitterman S (1969) Survey of vibrational relaxation data for processes important in the CO2–N2 laser system. Rev Mod Phys 41:26–47CrossRefGoogle Scholar
  49. 49.
    Plonjes et al (2000) Vibrational energy storage in high pressure mixtures of diatomic molecules. Chem Phys 260:353–366CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • T. Silva
    • 1
    Email author
  • M. Grofulović
    • 1
  • L. Terraz
    • 1
  • C. D. Pintassilgo
    • 1
    • 2
  • V. Guerra
    • 1
  1. 1.Instituto de Plasmas e Fusão Nuclear, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Departamento de Engenharia Física, Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations