Improving Cold Atmospheric Pressure Plasma Efficacy on Breast Cancer Cells Control-Ability and Mortality Using Vitamin C and Static Magnetic Field

  • R. Mehrabifard
  • H. MehdianEmail author
  • K. Hajisharifi
  • E. Amini
Original Paper


In the last decades, there have been numerous reports about the separate interactions of a magnetic field and cold atmospheric plasma (CAP) with the biological systems. We have investigated the combined effect of CAP with the static magnetic field (SMF) as an effective method for cancer cells treatment. MDA-MB-231 breast cancer cells were cultured and treated with CAP with different input power and exposure times in the presence and absence of the SMF. Vitamin C was also used in medium, and cell viability was investigated in the presence and absence of this antioxidant compound. The MTT assay was employed to measure cell survival, and a T-test or one-way ANOVA was used to assess the significance level of quantitative data. In order to determine the migration rate of cancer cells, wound healing assay was carried out. Results show that the presence of the SMF and vitamin C as well as increasing the input power significantly decrease the survival and migration rate of the cells. The results of the present investigation will greatly contribute to improve the CAP efficiency in cancer therapy by using the SMF and vitamin C as a complement to conventional CAP therapies.


Cancer cell Cold plasma Vitamin C Cell viability Static magnetic field 



  1. 1.
    Weltmann KD, Kindel E, von Woedtke T et al (2010) Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl Chem 82:1223–1237CrossRefGoogle Scholar
  2. 2.
    Yousfi M, Merbahi N, Pathak A, Eichwald O (2014) Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine. Fundam Clin Pharmacol 28:123–135CrossRefGoogle Scholar
  3. 3.
    Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Xu Z, Cheng C et al (2017) Bactericidal effects of plasma induced reactive species in dielectric barrier gas-liquid discharge. Plasma Chem Plasma Process 37:415–431. CrossRefGoogle Scholar
  5. 5.
    Xin Q, Zhang X, Lei L (2008) Inactivation of bacteria in oil field injection water by non-thermal plasma treatment. Plasma Chem Plasma Process 28:689–700. CrossRefGoogle Scholar
  6. 6.
    Daeschlein G, von Woedtke T, Kindel E et al (2010) Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Process Polym 7:224–230. CrossRefGoogle Scholar
  7. 7.
    Shapourzadeh A, Rahimi-Verki N, Atyabi SM et al (2016) Inhibitory effects of cold atmospheric plasma on the growth, ergosterol biosynthesis, and keratinase activity in Trichophyton rubrum. Arch Biochem Biophys 608:27–33. CrossRefPubMedGoogle Scholar
  8. 8.
    Rupf S, Lehmann A, Hannig M et al (2010) Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J Med Microbiol 59:206–212CrossRefGoogle Scholar
  9. 9.
    Stoffels E, Sakiyama Y, Graves DB (2008) Cold atmospheric plasma: charged species and their interactions with cells and tissues. IEEE Trans Plasma Sci 36:1441–1457CrossRefGoogle Scholar
  10. 10.
    Heinlin J, Morfill G, Landthaler M et al (2010) Plasma medicine: possible applications in dermatology. JDDG J der Dtsch Dermatologischen Gesellschaft 8:968–976Google Scholar
  11. 11.
    Ehlbeck J, Schnabel U, Polak M et al (2010) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44:13002. CrossRefGoogle Scholar
  12. 12.
    Keidar M (2015) Plasma for cancer treatment. Plasma Sources Sci Technol 24:33001CrossRefGoogle Scholar
  13. 13.
    Bekeschus S, Kolata J, Winterbourn C et al (2014) Hydrogen peroxide: a central player in physical plasma-induced oxidative stress in human blood cells. Free Radic Res 48:542–549CrossRefGoogle Scholar
  14. 14.
    Liu Z, Xu D, Zhou C et al (2018) Effects of the pulse polarity on helium plasma jets: discharge characteristics, key reactive species, and inactivation of myeloma cell. Plasma Chem Plasma Process. CrossRefGoogle Scholar
  15. 15.
    Lu X, Naidis GV, Laroussi M et al (2016) Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys Rep 630:1–84. CrossRefGoogle Scholar
  16. 16.
    Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278CrossRefGoogle Scholar
  17. 17.
    Ghodbane S, Lahbib A, Sakly M, Abdelmelek H (2013) Bioeffects of static magnetic fields: oxidative stress, genotoxic effects, and cancer studies. Biomed Res Int 2013:602987. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hashish AH, El-Missiry MA, Abdelkader HI, Abou-Saleh RH (2008) Assessment of biological changes of continuous whole body exposure to static magnetic field and extremely low frequency electromagnetic fields in mice. Ecotoxicol Environ Saf 71:895–902CrossRefGoogle Scholar
  19. 19.
    Jing D, Shen G, Cai J et al (2010) Effects of 180 mT static magnetic fields on diabetic wound healing in rats. Bioelectromagnetics 31:640–648CrossRefGoogle Scholar
  20. 20.
    Brkovic S, Postic S, Ilic D (2015) Influence of the magnetic field on microorganisms in the oral cavity. J Appl Oral Sci 23:179–186CrossRefGoogle Scholar
  21. 21.
    Sadri M, Abdolmaleki P, Abrun S et al (2017) Static magnetic field effect on cell alignment, growth, and differentiation in human cord-derived mesenchymal stem cells. Cell Mol Bioeng 10:249–262. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li J, Ma Y, Li N et al (2014) Natural static magnetic field-induced apoptosis in liver cancer cell. Electromagn Biol Med 33:47–50CrossRefGoogle Scholar
  23. 23.
    Dobson J (2012) Cancer therapy: death by magnetism. Nat Mater 11:1006CrossRefGoogle Scholar
  24. 24.
    Markov MS (2007) Therapeutic application of static magnetic fields. Environmentalist 27:457–463CrossRefGoogle Scholar
  25. 25.
    Sureda A, Batle JM, Tauler P et al (2006) Vitamin C supplementation influences the antioxidant response and nitric oxide handling of erythrocytes and lymphocytes to diving apnea. Eur J Clin Nutr 60:838–846. CrossRefPubMedGoogle Scholar
  26. 26.
    Ohno S, Ohno Y, Suzuki N et al (2009) High-dose vitamin C (ascorbic acid) therapy in the treatment of patients with advanced cancer. Anticancer Res 29:809–815PubMedGoogle Scholar
  27. 27.
    Amatore C, Arbault S, Ferreira DCM et al (2008) Vitamin C stimulates or attenuates reactive oxygen and nitrogen species (ROS, RNS) production depending on cell state: quantitative amperometric measurements of oxidative bursts at PLB-985 and RAW 264.7 cells at the single cell level. J Electroanal Chem 615:34–44. CrossRefGoogle Scholar
  28. 28.
    Ha YM, Park MK, Kim HJ et al (2009) High concentrations of ascorbic acid induces apoptosis of human gastric cancer cell by p38-MAP kinase-dependent up-regulation of transferrin receptor. Cancer Lett 277:48–54CrossRefGoogle Scholar
  29. 29.
    Cheng X, Rajjoub K, Shashurin A et al (2017) Enhancing cold atmospheric plasma treatment of cancer cells by static magnetic field. Bioelectromagnetics 38:53–62. CrossRefPubMedGoogle Scholar
  30. 30.
    Deng G, Jin Q, Yin S et al (2018) Experimental study on bacteria disinfection using a pulsed cold plasma jet with helium/oxygen mixed gas. Plasma Sci Technol. CrossRefGoogle Scholar
  31. 31.
    Duan Y, Huang C, Yu QS (2007) Cold plasma brush generated at atmospheric pressure. Rev Sci Instrum. CrossRefPubMedGoogle Scholar
  32. 32.
    Dringen R, Kussmaul L, Hamprecht B (1998) Detoxification of exogenous hydrogen peroxide and organic hydroperoxides by cultured astroglial cells assessed by microtiter plate assay. Brain Res Protoc 2:223–228. CrossRefGoogle Scholar
  33. 33.
    Hojnik N, Modic M, Ni Y et al (2019) Effective fungal spore inactivation with an environmentally friendly approach based on atmospheric pressure air plasma. Environ Sci Technol 53:1893–1904. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liu ZC, Liu DX, Chen C et al (2015) Physicochemical processes in the indirect interaction between surface air plasma and deionized water. J Phys D Appl Phys 48:495201CrossRefGoogle Scholar
  35. 35.
    Machala Z, Tarabova B, Hensel K et al (2013) Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Process Polym 10:649–659CrossRefGoogle Scholar
  36. 36.
    Tian W, Kushner MJ (2014) Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue. J Phys D Appl Phys 47:165201CrossRefGoogle Scholar
  37. 37.
    Safari R, Sohbatzadeh F (2015) Effect of DC magnetic field on atmospheric pressure argon plasma jet. Indian J Phys 89:495–502. CrossRefGoogle Scholar
  38. 38.
    Ledda M, Megiorni F, Pozzi D et al (2013) Non ionising radiation as a non chemical strategy in regenerative medicine: Ca2+-ICR “in vitro” effect on neuronal differentiation and tumorigenicity modulation in NT2 cells. PLoS ONE 8:e61535. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Raylman RR, Clavo AC, Wahl RL (1996) Exposure to strong static magnetic field slows the growth of human cancer cells in vitro. Bioelectromagn J Bioelectromagn Soc 17:358–363CrossRefGoogle Scholar
  40. 40.
    Gurhan H, Bruzón R, Xiong Y, Barnes F (2018) Effect of a low intensity static magnetic field on different biological parameters that characterize the cellular stress. In: 2018 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), pp 1–2Google Scholar
  41. 41.
    Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445CrossRefGoogle Scholar
  42. 42.
    Schmidt A, Bekeschus S, von Woedtke T, Hasse S (2015) Cell migration and adhesion of a human melanoma cell line is decreased by cold plasma treatment. Clin Plasma Med 3:24–31. CrossRefGoogle Scholar
  43. 43.
    Yun J, Mullarky E, Lu C et al (2015) Vitamin C selectively kills KRAS and. Science (80-) 350:1391–1396CrossRefGoogle Scholar
  44. 44.
    Lv H, Wang C, Fang T et al (2018) Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2. Precis Oncol 2:1. CrossRefGoogle Scholar
  45. 45.
    Padayatty SJ, Riordan HD, Hewitt SM et al (2006) Intravenously administered vitamin C as cancer therapy: three cases. CMAJ 174:937–942. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lim JY, Kim D, Kim BR et al (2016) Vitamin C induces apoptosis in AGS cells via production of ROS of mitochondria. Oncol Lett 12:4270–4276. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Maramag C, Menon M, Balaji KC et al (1997) Effect of vitamin C on prostate cancer cells in vitro: effect on cell number, viability, and DNA synthesis. Prostate 32:188–195. CrossRefPubMedGoogle Scholar
  48. 48.
    Ma Y, Ha CS, Hwang SW et al (2014) Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways. PLoS ONE 9:e91947CrossRefGoogle Scholar
  49. 49.
    Ishaq M, Kumar S, Varinli H et al (2014) Atmospheric gas plasma-induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Mol Biol Cell 25:1523–1531CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • R. Mehrabifard
    • 1
  • H. Mehdian
    • 1
    Email author
  • K. Hajisharifi
    • 1
  • E. Amini
    • 2
  1. 1.Department of Physics and Institute for Plasma ResearchKharazmi UniversityTehranIran
  2. 2.Department of Animal Biology, Faculty of Biological ScienceKharazmi UniversityTehranIran

Personalised recommendations