Advertisement

Silicon Oxide Barrier Films Deposited on Polycarbonate Substrates in Pulsed Plasmas

  • Shaham ShafaeiEmail author
  • Lanti Yang
  • Marcel Rudolph
  • Peter Awakowicz
Original Paper
  • 52 Downloads

Abstract

For many applications of polycarbonate (PC) from packaging to micro-electronics improved barrier properties are necessary. In this contribution, silica thin films were deposited from hexamethyldisiloxane/oxygen (HMDSO/O2) on polycarbonate substrate in three step plasma processes by combining a microwave (MW) surface wave discharge of 2.45 GHz with an optional radio-frequency (RF) bias of 13.56 MHz. The influence of interlayer thickness, HMDSO flow and oxygen to HMDSO ratio on barrier performance for three step-coating processes was investigated. The morphology and surface properties of the coated surface of PC were studied by atomic force microscopy (AFM). The surface topography showed a silica particles distribution on the PC substrate with relatively smooth surface roughness. AFM-QNM provides more insight into the surface morphology and stiffness. The results identify the coating structure for PC film coated with and without bias. High barrier improvement of the deposited films on PC substrates was obtained after plasma silicon coating process with a barrier improvement factor up to 337. It was found that the deposition process is optimal for food packaging applications by using combined MW-RF PECVD technology.

Keywords

Plasma technology Plasma enhanced chemical vapor deposition (PECVD) Microwave generator (MW) Radio frequency bias (RF) Barrier properties Atomic force microscopy-quantitative nano-mechanical mapping (AFM-QNM) 

Notes

Acknowledgements

We would like to thank the analytical team at SABIC for supporting all analytical measurements. We would like also to express our thanks to Theo Hoeks, Maria Soliman, Han Goossens, Robert vd Grampel and Franz Mercx for scientific insight, reviewing and supporting this study.

Supplementary material

11090_2019_10049_MOESM1_ESM.docx (599 kb)
Supplementary material 1 (DOCX 598 kb)

References

  1. 1.
    Zhang H, Sang L, Wang Z, Liu Z, Yang L, Chen Q (2018) Recent progress on non-thermal plasma technology for high barrier layer fabrication. Plasma Sci Technol 20:063001CrossRefGoogle Scholar
  2. 2.
    Hermosa SC, Top M, Dagar J, Fahlteich J, Brown TM (2019) Quantifying performance of permeation barrier encapsulation systems for flexible and glass based electronics and their application to perovskite solar cells. Adv Electron Mater 5:1800978CrossRefGoogle Scholar
  3. 3.
    Fotovvati B, Namdari N, Dehghanghadikolaei A (2019) On coating techniques for surface protection: a review. J Manuf Mater Process 3:28Google Scholar
  4. 4.
    De Kruijf N, Van Beest M, Rijk R, Sipilainen-Malm T, Paseiro Losada P, De Meulenaer B (2002) Active and intelligent packaging: applications and regulatory aspects. Food Addit Contam 19:144–162CrossRefGoogle Scholar
  5. 5.
    Chatham H (1996) Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surf Coat Technol 78:1–9CrossRefGoogle Scholar
  6. 6.
    Schneider J, Kiesler D, Leins M, Schulz A, Walker M, Schumacher U, Stroth U (2007) Development of plasma polymerized SiOx barriers on polymer films for food packaging applications. Plasma Process Polym 4:155–159CrossRefGoogle Scholar
  7. 7.
    Inagaki N, Tasaka S, Nakajima T (2000) Preparation of oxygen gas barrier polypropylene films by deposition of SiOx films plasma-polymerized from mixture of tetramethoxysilane and oxygen. J Appl Polym Sci 78:2389–2397CrossRefGoogle Scholar
  8. 8.
    Bicker M, Hormes R, Lohmeye M (2014) Method and device for the internal plasma treatment of hollow bodies. US201408747962 B2Google Scholar
  9. 9.
    Stevens R, Ormonde G, Mitchener J (2012) Method and apparatus for treating containers. US20120231182A1Google Scholar
  10. 10.
    Birka MP, O’Brien TF, Whiteside JH (2012) Gas/plasma spray coating. US20120225297A1Google Scholar
  11. 11.
    Yasuda H, Matsuzawa Y (2005) Economical advantage of low-pressure plasma polymerization coating. Plasma Process Polym 2:507–512CrossRefGoogle Scholar
  12. 12.
    Gruniger A, Bieder A, Sonnenfeld A, Rudolf von Rohr P, Muller U, Hauert R (2006) Influence of film structure and composition on diffusion barrier performance of SiOx thin films deposited by PECVD. Surf Coat Technol 200:4564–4571CrossRefGoogle Scholar
  13. 13.
    Kwak S, Jun JH, Yook JY (2014) Gas barrier film and method of preparing the same. US20140147684A1Google Scholar
  14. 14.
    Shi Y, He L, Guang F, Li L, Xin Z, Liu R (2019) A review: preparation, performance, and applications of silicon oxynitride film. Micromachines 10:552CrossRefGoogle Scholar
  15. 15.
    Aresta G, Palmans J, van de Sanden MCM, Creatore M (2012) Evidence of the filling of nano-porosity in SiO2-like layers by an initiated-CVD monomer. Microporous Mesoporous Mater 151:434–439CrossRefGoogle Scholar
  16. 16.
    Lee SE, Park YC (2017) Low-temperature deposition of SiNx, SiOxNy, and SiOx films from plasma discharge of SiH4 for polycarbonate glazing applications. Thin Solid Films 636:34–39CrossRefGoogle Scholar
  17. 17.
    Zajıckov L, Bursıkov V, Perina V, Mackov A, Subedi D, Janca J, Smirnov S (2001) Plasma modification of polycarbonates. Surf Coat Technol 142–144:449–454CrossRefGoogle Scholar
  18. 18.
    Walther M, Heming M, Spallek M (1996) Multilayer barrier coating system produced by plasma-impulse chemical vapor deposition (PICVD). Surf Coat Technol 80:200–202CrossRefGoogle Scholar
  19. 19.
    Byun TJ, Shin KS, Kim YJ, Han JG, Setsuhara Y (2009) Polycarbonate surface treatment by using an inductively-coupled plasma. J Korean Phys Soc 55:1785–1789CrossRefGoogle Scholar
  20. 20.
    Kim H, Jung SJ, Han YH, Lee HY, Kim JN, Jang DS, Lee JJ (2008) The effect of inductively coupled plasma treatment on the surface activation of polycarbonate substrate. Thin solid Film 516:3530–3533CrossRefGoogle Scholar
  21. 21.
    Soma Raju KRC, Sowntharya L, Lavanya S, Subasri R (2012) Effect of plasma pretreatment on adhesion and mechanical properties of sol-gel nanocomposite coatings on polycarbonate. Compos Interfaces 19:259–270CrossRefGoogle Scholar
  22. 22.
    Chen TN, Wuu DS, Wu CC, Chiang CC, Lin HB, Chen YP, Horng RH (2006) Effects of plasma pretreatment on silicon nitride barrier films on polycarbonate substrates. Thin solid Film 514:188–192CrossRefGoogle Scholar
  23. 23.
    Kang SM, Yoon SG, Yoon DH (2008) Surface treatment of polycarbonate and polyethersulphone for SiNx thin film deposition. Thin solid Film 516:1405–1409CrossRefGoogle Scholar
  24. 24.
    Schmauder T, Nauenburg KD, Kruse K, Ickes G (2006) Hard coatings by plasma CVD on polycarbonate for automotive and optical applications. Thin solid Film 502:270–274CrossRefGoogle Scholar
  25. 25.
    Jeon BJ (2018) Control of optical properties by the stepwise chemical and plasma spray treatment of polycarbonate. Appl Sci Converg Technol 27:135–139CrossRefGoogle Scholar
  26. 26.
    Lin YS, Weng MS, Chung TW, Huang C (2011) Enhanced surface hardness of flexible polycarbonate substrates using plasma-polymerized organosilicon oxynitride films by air plasma jet under atmospheric pressure. Surf Coat Technol 205:3856–3864CrossRefGoogle Scholar
  27. 27.
    Czylkowski D, Hrycak B, Sikora A, Moczała-Dusanowska M, Dors M, Jasinski M (2019) Surface modification of polycarbonate by an atmospheric pressure argon microwave plasma sheet. Materials 12:2418CrossRefGoogle Scholar
  28. 28.
    Steves S, Ozkaya B, Liu CN, Ozcan O, Bibinov N, Grundmeier G, Awakowicz P (2013) Silicon oxide barrier films deposited on PET foils in pulsed plasmas: influence of substrate bias on deposition process and film properties. J Phys D Appl Phys 46:084013CrossRefGoogle Scholar
  29. 29.
    Deilmann M, Theiss S, Awakowicz P (2008) Pulsed microwave plasma polymerization of silicon oxide films: application of efficient permeation barriers on polyethylene terephthalate. Surf Coat Technol 202:1911–1917CrossRefGoogle Scholar
  30. 30.
    Deilmann M, Grabowski M, Theiss S, Bibinov N, Awakowicz P (2008) Permeation mechanisms of pulsed microwave plasma deposited silicon oxide films for food packaging applications. J Phys D Appl Phys 41:135207CrossRefGoogle Scholar
  31. 31.
    Bahre H, Bahroun K, Behm H, Steves S, Awakowicz P, Böke M, Hopmann C, Winter J (2013) Surface pre-treatment for barrier coatings on polyethylene terephthalate. J Phys D Appl Phys 46:084012CrossRefGoogle Scholar
  32. 32.
    Deilmann M, Halfmann H, Bibinov N, Wunderlich J, Awakowicz P (2008) Low-pressure microwave plasma sterilization of polyethylene terephthalate bottles. J Food Prot 71:2119–2123CrossRefGoogle Scholar
  33. 33.
    Kovacs R, Bibinov N, Awakowicz P, Porteanu HE, Kühn S, Gesche R (2009) An integrated atmospheric microwave plasma source. Plasma Process Polym 6:S233–S236CrossRefGoogle Scholar
  34. 34.
    Deilmann M, Halfmann H, Steves S, Bibinov N, Awakowicz P (2009) Silicon oxide permeation barrier coating and plasma sterilization of PET bottles and foils. Plasma Process Polym 6:S695–S699CrossRefGoogle Scholar
  35. 35.
    Gesche R, Kovacs R, Tobies H, Wette F (2002) Plasma torch for treating surfaces at atmospheric pressure includes a jet pump within torch to provide low pressure region. DE10115241A1Google Scholar
  36. 36.
    Gesche R (2011) Method and generator circuit for production of plasma by means of radio-frequency excitation. US20110006687A1Google Scholar
  37. 37.
    Deilmann M (2008) Silicon oxide permeation barrier coating and sterilization of PET bottles by pulsed low-pressure microwave plasmas. Doctoral dissertation, urn:nbn:de:hbz: 294-23472Google Scholar
  38. 38.
    Räuchle E (1998) Duo-plasmaline, a surface wave sustained linearly extended discharge. J Phys IV France 8:99–108CrossRefGoogle Scholar
  39. 39.
    Steves S (2013) Barrier coating and sterilization of plastics by microwave and radio frequency low-pressure plasmas. Doctoral dissertation, URN 294-38831Google Scholar
  40. 40.
    Steves S, Styrnoll T, Mitschker F, Bienholz S, Bibinov N, Awakowicz P (2013) Characterization of low-pressure microwave and radio frequency discharges in oxygen applying optical emission spectroscopy and multipole resonance probe. J Phys D Appl Phys 46:445201CrossRefGoogle Scholar
  41. 41.
    Derjaguin BV, Muller VM, Toropov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53:314–326CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shaham Shafaei
    • 1
    Email author
  • Lanti Yang
    • 1
  • Marcel Rudolph
    • 2
  • Peter Awakowicz
    • 2
  1. 1.SABICBergen op ZoomThe Netherlands
  2. 2.Institute of Electrical Engineering and Plasma TechnologyRuhr-University BochumBochumGermany

Personalised recommendations