Synthesis and Photocatalytic Activity of WO3 Nanoparticles Prepared by Underwater Impulse Discharge

  • N. A. SirotkinEmail author
  • A. V. Khlyustova
  • V. A. Titov
  • A. S. Krayev
  • D. I. Nikitin
  • O. A. Dmitrieva
  • A. V. Agafonov
Original Paper


An underwater impulse discharge was used for synthesis tungsten trioxide nanoparticles. The chemical composition and morphology of obtained particles were studied by using X-ray diffraction spectroscopy and electron microscopy. The dynamic light scattering was used to measure the average particle diameter and zeta-potential. It was found that a monoclinic modification of tungsten trioxide was formed with an average particle diameter of about 60 nm. The photocatalytic performance of WO3 was estimated through the degradation of Rhodamine B under dark and UV irradiation conditions. The powder of WO3 exhibited great photocatalytic activity for photodegradation of Rhodamine B of 100% under UV irradiation for 50 min.


Plasma Tungsten trioxide Underwater discharge Photocatalytic activity 



Authors would like to thank the Dr. P. Smirnov for conducting XRD analysis, Dr. S. Guseinov for conducting thermogravimetric analysis and Dr. N. Kochkina for conducting DLS measurements at the center of joint use of scientific equipment (the Upper Volga Regional Center for Physical–Chemical Research, Russia) and the Mr. A. Ovtsyn for conducting SEM analysis (Interdepartmental Laboratory of Structural Analysis Methods at the Ivanovo State University of Chemistry and Technology). This work is supported by the Russian Science Foundation under Grant 19-73-00022.


  1. 1.
    Bruggeman PJ, Kushner MJ, Locke BR et al (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25:053002CrossRefGoogle Scholar
  2. 2.
    Saito G, Akiyama T (2015) Nanomaterial synthesis using plasma generation in liquid. J Nanomater 2015:123696CrossRefGoogle Scholar
  3. 3.
    Chen Q, Li J, Li Y (2015) A review of plasma–liquid interactions for nanomaterial synthesis. J Phys D Appl Phys 48:424005CrossRefGoogle Scholar
  4. 4.
    Richmonds C, Sankaran RM (2008) Plasma–liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl Phys Lett 93:131501CrossRefGoogle Scholar
  5. 5.
    Chen Q, Kaneko T, Hatakeyama R (2012) Rapid synthesis of water–soluble gold nanoparticles with control of size and assembly using gas–liquid interfacial discharge plasma. Chem Phys Lett 521:113CrossRefGoogle Scholar
  6. 6.
    Patel J, Němcová L, Maguire P, Graham W, Mariotti D (2013) Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Nanotechnology 24:245604PubMedCrossRefGoogle Scholar
  7. 7.
    Guo Y, Quan X, Lu N, Zhao H, Chen S (2007) Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Environ Sci Technol 41:4422PubMedCrossRefGoogle Scholar
  8. 8.
    Berger S, Tsuchiya H, Ghicov A, Schmuki P (2006) High photocurrent conversion efficiency in self-organized porous WO3. Appl Phys Lett 88:203119CrossRefGoogle Scholar
  9. 9.
    Zhang H, Chen G, Bahnemann DW (2009) Photoelectrocatalytic materials for environmental applications. J Mater Chem 19:5089CrossRefGoogle Scholar
  10. 10.
    Zhang J, Wang XL, Xia XH, Gu CD, Zhao ZJ, Tu JP (2010) Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers. Electrochim Acta 55:6953CrossRefGoogle Scholar
  11. 11.
    Wang W, Pang YX, Hodgson SNB (2010) Preparation, characterisation and electrochromic property of mesostructured tungsten oxide films via a surfactant templated sol–gel process from tungstic acid. J Sol Gel Sci Technol 54:19CrossRefGoogle Scholar
  12. 12.
    Liao CC, Chen FR, Kai JJ (2007) Annealing effect on electrochromic properties of tungsten oxide nanowires. Sol Energy Mater Sol C 91:1258CrossRefGoogle Scholar
  13. 13.
    Ippolito SJ, Kandasamy S, Kalantar-zadeh K, Wlodarski W (2005) Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts. Sens Actuators B 108:154CrossRefGoogle Scholar
  14. 14.
    Zhu LF, She JC, Luo JY, Deng SZ, Chen J, Xu NS (2010) Study of physical and chemical processes of H2 sensing of Pt-coated WO3 nanowire films. J Phys Chem C 114:15504CrossRefGoogle Scholar
  15. 15.
    Zheng H, Tachibana Y, Kalantar-zadeh K (2010) Dye-sensitized solar cells based on WO3. Langmuir 26:19148PubMedCrossRefGoogle Scholar
  16. 16.
    Reich S, Leitus G, Popovitz-Biro R, Goldbourt A, Vega S (2009) A possible 2D HxWO3 superconductor with a Tc of 120 K. J Supercond Novel Magn 22:343CrossRefGoogle Scholar
  17. 17.
    Syed MA, Manzoor U, Shah I, Bukhari SHA (2010) Antibacterial effects of tungsten nanoparticles on the Escherichia coli strains isolated from catheterized urinary tract infection (UTI) cases and Staphylococcus aureus. New Microbiol 33:329PubMedGoogle Scholar
  18. 18.
    Deniz D, Frankel DJ, Lad RJ (2010) Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition. Thin Solid Films 518:4095CrossRefGoogle Scholar
  19. 19.
    Thangala J, Vaddiraju S, Bogale R, Thurman R, Powers T, Deb B, Sunkara M (2007) Hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires. Small 3:890PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Sivakumar R, Gopalakrishnan R, Jayachandran M, Sanjeeviraja C (2007) Preparation and characterization of electron beam evaporated WO3 thin films. Opt Mater 29:679CrossRefGoogle Scholar
  21. 21.
    Lethy KJ, Beena D, Kumar RV, Pillai VPM, Ganesan V, Sathe V, Phase DM (2008) Nanostructured tungsten oxide thin films by the reactive pulsed laser deposition technique. Appl Phys A Mater Sci Process 91:637CrossRefGoogle Scholar
  22. 22.
    Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J Am Chem Soc 123:10639PubMedCrossRefGoogle Scholar
  23. 23.
    Badilescu S, Ashrit PV (2003) Study of sol–gel prepared nanostructured WO3 thin films and composites for electrochromic applications. Solid State Ionics 158:187CrossRefGoogle Scholar
  24. 24.
    Lai WH, Shieh J, Teoh LG, Hon MH (2006) Fabrication of one-dimensional mesoporous tungsten oxide. Nanotechnology 17:110CrossRefGoogle Scholar
  25. 25.
    Li XL, Lou TJ, Sun XM, Li YD (2004) Highly sensitive WO3 hollow-sphere gas sensors. Inorg Chem 43:5442PubMedCrossRefGoogle Scholar
  26. 26.
    Kominami H, Yabutani K, Yamamoto T, Kara Y, Ohtani B (2001) Synthesis of highly active tungsten (VI) oxide photocatalysts for oxygen evolution by hydrothermal treatment of aqueous tungstic acid solutions. J Mater Chem 11:3222CrossRefGoogle Scholar
  27. 27.
    Balazsi C, Pfeifer J (2002) Development of tungsten oxide hydrate phases during precipitation, room temperature ripening and hydrothermal treatment. Solid State Ionics 151:353CrossRefGoogle Scholar
  28. 28.
    Chen L, Mashimo T, Okudera H, Iwamoto C, Omurzak E (2014) Synthesis of WO3·H2O nanoparticles by pulsed plasma in liquid. RSC Adv 4:28673CrossRefGoogle Scholar
  29. 29.
    Ashkarran AA, Ahadian MM, Ardakani SM (2008) Synthesis and photocatalytic activity of WO3 nanoparticles prepared by the arc discharge method in deionized water. Nanotechnology 19:195709PubMedCrossRefGoogle Scholar
  30. 30.
    Hattori Y, Nomura S, Mukasa S, Toyota H, Inoue T, Usui T (2013) Synthesis of tungsten oxide, silver, and gold nanoparticles by radio frequency plasma in water. J Alloys Compd 578:148CrossRefGoogle Scholar
  31. 31.
    Hattori Y, Nomura S, Mukasa S, Toyota H, Inoue T, Kasahara T (2013) Synthesis of tungsten trioxide nanoparticles by microwave plasma in liquid and analysis of physical properties. J Alloys Compd 560:105CrossRefGoogle Scholar
  32. 32.
    Gerasimova TV, Evdokimova OL, Kraev AS, Ivanov VK, Agafonov AV (2016) Micro-mesoporous anatase TiO2 nanorods with high specific surface area possessing enhanced adsorption ability and photocatalytic activity. Microporous Mesoporous Mater 235:185CrossRefGoogle Scholar
  33. 33.
    Cyber Wit Diatomic: Database and Simulation Program. Accessed 25 Nov 2011
  34. 34.
    Titov VA, Rybkin VV, Smirnov SA, Kulentsan AI, Choi HS (2006) Experimental and theoretical studies on the characteristics of atmospheric pressure glow discharge with liquid cathode. Plasma Chem Plasma Proc 26:543CrossRefGoogle Scholar
  35. 35.
    Laux CO, Spence TG, Kruger CH, Zare RN (2003) Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci Technol 12:125CrossRefGoogle Scholar
  36. 36.
    Bruggeman P, Ribežl E, Maslani A, Degroote J, Malesevic A, Rego R, Leys C (2008) Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode. Plasma Sources Sci Technol 17:025012CrossRefGoogle Scholar
  37. 37.
    Darwiche S, Nikravech M, Awamat S, Morvan D, Amouroux J (2007) Optical emission spectroscopic investigation of hydrogen plasma used for modification of electrical properties of multi-crystalline silicon. J Phys D Appl Phys 40:1030–1036CrossRefGoogle Scholar
  38. 38.
    Wiese WL, Smith MW, Glennon BM (1966) Atomic transition probabilities. Volume 1: Hydrogen through neon. A critical data compilation. National Bureau of Standards, Washington, DCGoogle Scholar
  39. 39.
    Liu H, Peng T, Ke D, Peng Z, Yan C (2007) Preparation and photocatalytic activity of dysprosium doped tungsten trioxide nanoparticles. Mater Chem Phys 104:377CrossRefGoogle Scholar
  40. 40.
    Feng M, Pan AL, Zhang HR, Li ZA, Liu F, Liu HW, Gao HJ (2005) Strong photoluminescence of nanostructured crystalline tungsten oxide thin films. Appl Phys Lett 86:141901CrossRefGoogle Scholar
  41. 41.
    Chauhan V, Gupta T, Koratkar N, Kumar R (2018) Studies of the electronic excitation modifications induced by SHI of Au ions in RF sputtered ZrO2 thin films. Mater Sci Semicond Process 88:262CrossRefGoogle Scholar
  42. 42.
    Khlyustova A, Sirotkin N, Kochkina N, Krayev A, Titov V, Agafonov A (2019) Deposition of silver nanostructures on polymer films by glow discharge. Plasma Chem Plasma Proc 39:311CrossRefGoogle Scholar
  43. 43.
    Pai DZ (2011) Nanomaterials synthesis at atmospheric pressure using nanosecond discharges. J Phys D Appl Phys 44:174024CrossRefGoogle Scholar
  44. 44.
    Pai DZ, Ostrikov KK, Kumar S, Lacoste DA, Levchenko I, Laux CO (2013) Energy efficiency in nanoscale synthesis using nanosecond plasmas. Sci Rep 3:1221PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tahir MB, Sagir M, Zubair M, Rafique M, Abbas I, Shakil M, Ahmed A (2018) WO3 nanostructures-based photocatalyst approach towards degradation of RhB dye. J Inorg Organomet Polym Mater 28:1107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. A. Sirotkin
    • 1
    Email author
  • A. V. Khlyustova
    • 1
  • V. A. Titov
    • 1
  • A. S. Krayev
    • 1
  • D. I. Nikitin
    • 1
  • O. A. Dmitrieva
    • 1
  • A. V. Agafonov
    • 1
  1. 1.G.A. Krestov Institute of Solution Chemistry RASIvanovoRussia

Personalised recommendations