Plasma Chemistry and Plasma Processing

, Volume 39, Issue 5, pp 1275–1289 | Cite as

Role of Electron–Ion Dissociative Recombination in \(\hbox {CH}_{4}\) Microwave Plasma on Basis of Simulations and Measurements of Electron Energy

  • T. MineaEmail author
  • A. W. van de Steeg
  • B. Wolf
  • A. S. da Silva
  • F. J. J. Peeters
  • D. C. M. van den Bekerom
  • T. Butterworth
  • Q. Ong
  • M. C. M. van de Sanden
  • G. J. van Rooij
Original Paper


C–H bond activation was studied in low pressure microwave plasma discharges in methane. Electron energy loss channels were analyzed in view of promoting vibrational excitation. The molecular dissociative recombination (DR) channel is concluded to play multiple roles in the hydrocarbon plasma chemistry. DR increases the electron temperature with input power density and simultaneously breaks the hydrocarbon chains. Depending on the ionic species considered, plasma density \(\hbox {n}_e\) in the range of \(10^{17}-10^{19}\,\hbox {m}^{-3}\) (\(10^{-6}-10^{-4}\) ionization degree) and the electron mean energy \(<T_e>\) in the range of \(2-4\hbox { eV}\) were estimated on basis of a Boltzman solver. \(<T_e>\) from \(2-3\hbox { eV}\) measured with Thomson scattering anchored the microwave discharges in a preferential regime for vibrational excitation. The best agreement with experiments was obtained when \(\hbox {C}^{+}\) is the dominant ion in the \(\hbox {CH}_{4}\) microwave plasma, formed through successive DR and charge exchange reactions from molecular ions.


Methane Plasma Activation Thomson Scattering 



  1. 1.
    Holmen A (2009) Direct conversion of methane to fuels and chemicals. Catal Today 142(1–2):2–8CrossRefGoogle Scholar
  2. 2.
    Trimm D (2005) Alternative routes to synfuel from natural gas. In: Derouane EG, Parmon V, Lemos F, Ramôa Ribeiro F (eds) Sustainable strategies for the upgrading of natural gas: fundamentals, challenges, and opportunities. NATO science series II: mathematics, physics and chemistry, vol 191. Springer, Dordrecht. CrossRefGoogle Scholar
  3. 3.
    Snoeckx R, Wang W, Zhang X, Cha MS, Bogaerts A (2018) Plasma-based multi-reforming for gas-to-liquid: tuning the plasma chemistry towards methanol. Sci Rep 8(1):15929CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    LXcat (2017) Hayashi databaseGoogle Scholar
  5. 5.
    Godyak V (2013) Electron energy distribution function control in gas discharge plasmas. Phys Plasmas 20(10):101611CrossRefGoogle Scholar
  6. 6.
    Godyak VA (2006) Nonequilibrium EEDF in gas discharge plasmas. IEEE Trans Plasma Sci 34(3):755–766CrossRefGoogle Scholar
  7. 7.
    van Rooij GJ, van den Bekerom DCM, den Harder N, Minea T, Berden G, Bongers WA, Engeln R, Graswinckel MF, Zoethout E, van de Sanden MCM (2015) Taming microwave plasma to beat thermodynamics in CO\(_2\) dissociation. Faraday Discuss 183:233–248CrossRefPubMedGoogle Scholar
  8. 8.
    Nozaki T, Muto N, Kado S, Okazaki K (2004) Dissociation of vibrationally excited methane on Ni catalyst: Part 1. Application to methane steam reforming. Catal Today 89(1):57–65CrossRefGoogle Scholar
  9. 9.
    Janev R, Reiter D (2002) Collision processes of CH\(_y\) and CH\(_y^+\) hydrocarbons with plasma electrons and protons. Phys Plasmas 9(9):4071–4081CrossRefGoogle Scholar
  10. 10.
    Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB (2002) Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem Rev 102(1):231–282CrossRefPubMedGoogle Scholar
  11. 11.
    Zhan C-G, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107(20):4184–4195CrossRefGoogle Scholar
  12. 12.
    Plessis P, Marmet P (1987) Electroionization study of ethane: ionization and appearance energies, ion-pair formations and negative ions. Can J Chem 65(6):1424–1432CrossRefGoogle Scholar
  13. 13.
    Chen ES, Wentworth W, Chen EC (2002) The electron affinities of NO and O2. J Mol Struct 606(1–3):1–7CrossRefGoogle Scholar
  14. 14.
    Larsson M, Orel AE (2008) Dissociative recombination of molecular ions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. 15.
    Larsson M, Geppert W, Nyman G (2012) Ion chemistry in space. Rep Progress Phys 75(6):066901CrossRefGoogle Scholar
  16. 16.
    Sheehan C, Maurice J-PS (2004) Dissociative recombination of the methane family ions: rate coefficients and implications. Adv Space Res 33(2):216–220CrossRefGoogle Scholar
  17. 17.
    Florescu-Mitchell AI, Mitchell JBA (2006) Dissociative recombination. Phys Rep 430(5–6):277–374CrossRefGoogle Scholar
  18. 18.
    Reiter D, Janev R (2010) Hydrocarbon collision cross sections for magnetic fusion: the methane, ethane and propane families. Contrib Plasma Phys 50(10):986–1013CrossRefGoogle Scholar
  19. 19.
    Bae J, Lee M, Park S, Jeong M-G, Hong D-Y, Kim YD, Park Y-K, Hwang YK (2017) Investigation of intermediates in non-oxidative coupling of methane by non-thermal rf plasma. Catal Today 293:105–112CrossRefGoogle Scholar
  20. 20.
    Toyoda H, Kojima H, Sugai H (1989) Mass spectroscopic investigation of the CH\(_3\) radicals in a methane rf discharge. Appl Phys Lett 54(16):1507–1509CrossRefGoogle Scholar
  21. 21.
    Masi M, Cavallotti C, Carrà S (1998) Different approaches for methane plasmas modeling. Chem Eng Sci 53(22):3875–3886CrossRefGoogle Scholar
  22. 22.
    Field F, Franklin J, Munson M-B (1963) Reactions of gaseous ions. xii. high pressure mass spectrometric study of methane. J Am Chem Soc 85(22):3575–3583CrossRefGoogle Scholar
  23. 23.
    De Bie C, Verheyde B, Martens T, van Dijk J, Paulussen S, Bogaerts A (2011) Fluid modeling of the conversion of methane into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge. Plasma Process Polym 8(11):1033–1058CrossRefGoogle Scholar
  24. 24.
    McElroy D, Walsh C, Markwick A, Cordiner M, Smith K, Millar T (2013) The UMIST database for astrochemistry 2012. Astron Astrophys 550:A36CrossRefGoogle Scholar
  25. 25.
    Janev RK, Reiter D, Samm U (2003) Collision processes in low-temperature hydrogen plasmas, vol 102. Forschungszentrum Jülich, ZentralbibliothekGoogle Scholar
  26. 26.
    Roth J, Garcia-Rosales C (1996) Analytic description of the chemical erosion of graphite by hydrogen ions. Nucl Fusion 36(12):1647CrossRefGoogle Scholar
  27. 27.
    Roth J (1999) Chemical erosion of carbon based materials in fusion devices. J Nucl Mater 266:51–57CrossRefGoogle Scholar
  28. 28.
    Fridman A (2008) Plasma chemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  29. 29.
    Janev R, Kato T, Wang J (2000) Catalytic mechanism of divertor plasma recombination provided by hydrocarbon impurities. Phys Plasmas 7(11):4364–4367CrossRefGoogle Scholar
  30. 30.
    van Swaaij G (2014) Studies of impurity transport in high density, low-temperature plasma with the ERO code. PhD thesis, Technische Universiteit EindhovenGoogle Scholar
  31. 31.
    Van Swaaij G, Bystrov K, Borodin D, Kirschner A, van der Vegt L, van Rooij G, De Temmerman G, Goedheer W (2012) Dissociative recombination and electron-impact de-excitation in CH photon emission under ITER divertor-relevant plasma conditions. Plasma Phys Control Fusion 54(9):095013CrossRefGoogle Scholar
  32. 32.
    Benedikt J (2010) Plasma-chemical reactions: low pressure acetylene plasmas. J Phys D Appl Phys 43(4):043001CrossRefGoogle Scholar
  33. 33.
    Benedikt J, Letourneur K, Wisse M, Schram D, Van De Sanden M (2002) Plasma chemistry during deposition of ac: H. Diam Relat Mater 11(3–6):989–993CrossRefGoogle Scholar
  34. 34.
    Benedikt J, Woen R, Van Mensfoort S, Perina V, Hong J, Van De Sanden M (2003) Plasma chemistry during the deposition of ac: H films and its influence on film properties. Diam Relat Mater 12(2):90–97CrossRefGoogle Scholar
  35. 35.
    Kessels W, Van de Sanden M, Schram D (2000) Film growth precursors in a remote SiH\(_{4}\) plasma used for high-rate deposition of hydrogenated amorphous silicon. J Vac Sci Technol A Vac Surf Films 18(5):2153–2163CrossRefGoogle Scholar
  36. 36.
    Hagelaar GJM, Pitchford LC (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sour Sci Technol 14(14):722–733CrossRefGoogle Scholar
  37. 37.
    Van der Meiden H, Al R, Barth C, Donné A, Engeln R, Goedheer W, De Groot B, Kleyn A, Koppers W, Cardozo N Lopes (2008) High sensitivity imaging Thomson scattering for low temperature plasma. Rev Sci Instrum 79(1):013505CrossRefPubMedGoogle Scholar
  38. 38.
    Van Gessel A, Carbone E, Bruggeman P, Van der Mullen J (2012) Laser scattering on an atmospheric pressure plasma jet: disentangling Rayleigh, Raman and Thomson scattering. Plasma Sour Sci Technol 21(1):015003CrossRefGoogle Scholar
  39. 39.
    Glenzer S, Alley W, Estabrook K, De Groot J, Haines M, Hammer J, Jadaud J-P, MacGowan B, Moody J, Rozmus W et al (1999) Thomson scattering from laser plasmas. Phys Plasmas 6(5):2117–2128CrossRefGoogle Scholar
  40. 40.
    van de Steeg A et al. The electron temperature in pulsed microwave plasmas, assessed by Thomson scattering, and its relationship to gas heating: the case of \(\text{N}_{2}\) and \(\text{ CH }_{4}\). (in preparations)Google Scholar
  41. 41.
    van den Bekerom D, den Harder N, Minea T, Gatti N, Linares JP, Bongers W, van de Sanden R, van Rooij G (2017) Non-equilibrium microwave plasma for efficient high temperature chemistry. J Vis Exp 126:1–11Google Scholar
  42. 42.
    Gatti N, Ponduri S, Peeters F, van den Bekerom DCM, Minea T, Tosi P, de Sanden RV, Rooij GJV (2018) Preferential vibrational excitation in microwave nitrogen plasma assessed by Raman scattering. Plasma Sour Sci Technol 27:055006CrossRefGoogle Scholar
  43. 43.
    Faltýnek J, Hnilica J, Kudrle V (2017) Electron density in amplitude modulated microwave atmospheric plasma jet as determined from microwave interferometry and emission spectroscopy. Plasma Sour Sci Technol 26(1):015010CrossRefGoogle Scholar
  44. 44.
    den Harder N, van den Bekerom D, Al RS, Graswinckel MF, Palomares JM, Peeters FJ, Ponduri S, Minea T, Bongers WA, van de Sanden M et al (2017) Homogeneous CO\(_2\) conversion by microwave plasma: wave propagation and diagnostics. Plasma Process Polym 14(6):1600120CrossRefGoogle Scholar
  45. 45.
    Minea T, van den Bekerom DCM, Peeters FJJ, Zoethout E, Graswinckel MF, van de Sanden MCM, Cents T, Lefferts L, van Rooij GJ (2018) Non-oxidative methane coupling to \(\text{ C }_{2}\) hydrocarbons in a microwave plasma reactor. Plasma Process Polym 15(11):1800087CrossRefGoogle Scholar
  46. 46.
    Ayinde TF (2010) A generalized relationship for swirl decay in laminar pipe flow. Sadhana Acad Proc Eng Sci 35(2):129–137Google Scholar
  47. 47.
    Yao S, Fang T (2012) Analytical solutions of laminar swirl decay in a straight pipe. Commun Nonlinear Sci Numer Simul 17(8):3235–3246CrossRefGoogle Scholar
  48. 48.
    Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing. Wiley, HobokenCrossRefGoogle Scholar
  49. 49.
    Heintze M, Magureanu M, Kettlitz M (2002) Mechanism of C\(_2\) hydrocarbon formation from methane in a pulsed microwave plasma. J Appl Phys 92(12):7022–7031CrossRefGoogle Scholar
  50. 50.
    Fridman A, Kennedy L (2004) Plasma physics and engineering. Taylor & Francis, Milton ParkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. Minea
    • 1
    Email author
  • A. W. van de Steeg
    • 1
  • B. Wolf
    • 1
  • A. S. da Silva
    • 1
  • F. J. J. Peeters
    • 1
  • D. C. M. van den Bekerom
    • 1
  • T. Butterworth
    • 1
  • Q. Ong
    • 1
  • M. C. M. van de Sanden
    • 1
  • G. J. van Rooij
    • 1
  1. 1.Non-equilibrium Fuel Conversion, DIFFEREindhovenThe Netherlands

Personalised recommendations