Advertisement

Simultaneous Degradation of Aqueous Trichloroacetic Acid by the Combined Action of Anodic Contact Glow Discharge Electrolysis and Normal Electrolytic Processes at the Cathode

  • Chen Zhao
  • Haiming YangEmail author
  • Maowei Ju
  • Xiaotong Zhao
  • Lixiang Li
  • Shaoyan Wang
  • Baigang An
Original Paper
  • 16 Downloads

Abstract

To enhance the removal of trichloroacetic acid (TCA) by anodic contact glow discharge electrolysis (CGDE), the combined degradation of TCA by the action of anodic CGDE, denoted anodic degradation, and normal electrolytic processes at the cathode, denoted cathodic degradation, was investigated. Here, this overall process is termed simultaneous degradation. Compared to anodic degradation, in simultaneous degradation, the reduction rates for TCA and total organic carbon (TOC) increased from 65.32% and 62.03% to 91.82% and 73.03%, respectively. Meanwhile, the dechlorination rate rose from 64.6 to 80.12%. For simultaneous degradation, the disappearance of TCA, the reduction in the TOC, and the dechlorination of TCA, followed first-order kinetics. The reaction intermediates were detected and, based on the intermediates and the observed kinetics, the effects of the simultaneous degradation of TCA, TOC, and dechlorination of TCA are discussed. The cathode materials, length of the anode dipped into the electrolyte, and Pd loading on the Ni cathode all affected the simultaneous degradation of TCA significantly. The effect of the addition of Fe2+ was also investigated. The additive and synergistic effects of the combination of anodic and cathodic degradations on simultaneous degradation are discussed. Based on these results, an analysis of the degradation of TCA suggests that ·OH and ·H/e aq generated by the action of anodic CGDE, as well as the ·Hads generated on the Pd-loaded Ni cathode surface, are the key species responsible for the dechlorination of TCA. Furthermore, possible mechanistic routes for the simultaneous degradation of TCA are proposed.

Keywords

Simultaneous degradation Hydroxyl radical Absorbed hydrogen radical Anodic CGDE Trichloroacetic acid Pd loading 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51308276); Scientific Research Foundation for Doctors of Liaoning Province (Grant No. 20141123); Growth Plan for Distinguished Young Scholars in Colleges and Universities of Liaoning Province China (LJQ2015055); Anshan Science and Technology Program Project (Grant No. 2961); the National Natural Science Foundation of China (51102126); Innovative Research Team in Colleges and Universities of Liaoning Province China (LT2014007); and Natural Science Foundation of Liaoning Province, China (2015020634). Special thanks go to Professor Meguru Tezuka (Saitama Institute of Technology) and Professor Lifen Liu (Dalian University of Technology) for their comments and support.

References

  1. 1.
    Bruggeman PJ (2016) Plasma Sources Sci Technol 25:053002CrossRefGoogle Scholar
  2. 2.
    Wang BJ, Wu YF, Jiang BC, Song HO, Li WT, Jiang YL, Wang CM, Sun L, Li Q, Li AM (2016) Electrochim Acta 219:509CrossRefGoogle Scholar
  3. 3.
    Dabo P, Cyr A, Laplante F, Jean F, Menard H, Lessard J (2000) Environ Sci Technol 34:1265CrossRefGoogle Scholar
  4. 4.
    Wang XY, Zhou MH, Jin XL (2012) Electrochim Acta 83:501CrossRefGoogle Scholar
  5. 5.
    Miyoshi K, Kamegaya Y, Matsumura M (2004) Chemosphere 56:187CrossRefGoogle Scholar
  6. 6.
    Hickling A, Ingram MD (1964) Trans Faraday Soc 60:783CrossRefGoogle Scholar
  7. 7.
    Sengupta SK, Singh OP (1991) J Electroanal Chem 301:189CrossRefGoogle Scholar
  8. 8.
    Sengupta SK, Singh OP (1994) J Electroanal Chem 369:113CrossRefGoogle Scholar
  9. 9.
    Sengupta SK, Singh R, Srivastava AK (1998) Indian J Chem 37A:558Google Scholar
  10. 10.
    Singh R, Gangal U, Sen Gupta SK (2012) Plasma Chem Plasma Process 32:609CrossRefGoogle Scholar
  11. 11.
    Srivastava Y, Jaiswal S, Singh OP, Sen Gupta SK (2014) Indian J Chem 53A:62Google Scholar
  12. 12.
    Buxton GV, Greenstock CL, Helman WP, Ross AB (1998) Phys Chem Ref Data 17:513CrossRefGoogle Scholar
  13. 13.
    Gangal U, Srivastava M, Sen Gupta SK (2010) Plasma Chem Plasma Process 30:299CrossRefGoogle Scholar
  14. 14.
    Tomizawa S, Tezuka M (2007) Plasma Chem Plasma Process 27:486CrossRefGoogle Scholar
  15. 15.
    Lu QF, Yu J, Gao JZ (2006) J Hazard Mater B136:526CrossRefGoogle Scholar
  16. 16.
    Liu YJ (2009) J Hazard Mater 166:1495CrossRefGoogle Scholar
  17. 17.
    Wen YZ, Jiang XZ, Liu WP (2002) Plasma Chem Plasma Process 22:175CrossRefGoogle Scholar
  18. 18.
    Amano R, Tezuka M (2006) Water Res 40:1857CrossRefGoogle Scholar
  19. 19.
    Jin XL, Zhang HM, Wang XY, Zhou MH (2012) Electrochim Acta 59:474CrossRefGoogle Scholar
  20. 20.
    Wang L, Liu P, Zhang S (2015) Electrochim Acta 165:390CrossRefGoogle Scholar
  21. 21.
    Wang L, Liu P, Chen T (2016) Plasma Chem Plasma Process 36:615CrossRefGoogle Scholar
  22. 22.
    Gao J, Chen L, He YY, Yan ZC, Zheng XJ (2014) J Hazard Mater 265:261CrossRefGoogle Scholar
  23. 23.
    Jin X, Wang X, Wang Yu, Ren H (2013) Ind Eng Chem Res 52:9726CrossRefGoogle Scholar
  24. 24.
    Hong S, Min ZW, Mok C, Kwon H, Kim T, Kim D (2013) Food Sci Biotechnol 22:1773CrossRefGoogle Scholar
  25. 25.
    Tong S, Ni Y, Shen C, Wen Y, Jiang X (2011) Water Sci Technol 63:2814CrossRefGoogle Scholar
  26. 26.
    Bae JS, Lee JS, Kim YS, Sim WJ, Lee H, Chun JY, Park K (2008) Korean Chem Eng Res 46:886Google Scholar
  27. 27.
    Munegami T, Shimoyama A (1998) Viva Origino 26:103Google Scholar
  28. 28.
    Sen Gupta SK (2017) Plasma Chem Plasma Process 37:897CrossRefGoogle Scholar
  29. 29.
    Yang HM, Matsumoto Y, Tezuka M (2009) J Environ Sci 21:142CrossRefGoogle Scholar
  30. 30.
    Yang HM, Tezuka M (2011) J Phys D Appl Phys 44:155203CrossRefGoogle Scholar
  31. 31.
    Yang HM, Tezuka M (2011) J Environ Sci 44:231044Google Scholar
  32. 32.
    Yang HM, Cai X, Tezuka M (2013) Plasma Chem Plasma Process 33:1043CrossRefGoogle Scholar
  33. 33.
    Wang L, Jiang XZ (2008) Environ Sci Technol 42:8492CrossRefGoogle Scholar
  34. 34.
    Wang L, Zeng H, Yu X (2014) Electrochim Acta 115:332CrossRefGoogle Scholar
  35. 35.
    Rumbach P, Go DB (2017) Synth Top Catal 60:799CrossRefGoogle Scholar
  36. 36.
    Gong JY, Wang J, Xie WJ, Cai WM (2008) J Appl Electrochem 38:1749CrossRefGoogle Scholar
  37. 37.
    Zhao YL, Li XF (2011) Environ Chem 1:20Google Scholar
  38. 38.
    Melnick RL, Nyska A, Foster PM, Roycroft JH, Kissling GE (2007) Toxicology 230:126CrossRefGoogle Scholar
  39. 39.
    McRae BM, LaPara TM, Hozalski RM (2004) Chemosphere 55:915CrossRefGoogle Scholar
  40. 40.
    Lifongo LL, Bowden DJ, Brimblecombe P (2004) Chemosphere 55:467CrossRefGoogle Scholar
  41. 41.
    Yang HM, Zhao XT, An BA, Li LX, Wang SY, Ju MW (2017) Environ Protect Chem Ind 4:404Google Scholar
  42. 42.
    Wu C, Wei D, Fan J, Wang L (2001) Chemosphere 44(5):1293CrossRefGoogle Scholar
  43. 43.
    Kosobutskii VS (2001) High Energy Chem 35(3):202CrossRefGoogle Scholar
  44. 44.
    Thagard SM, Stratton GR, Dai F, Bellona CL, Holsen TM, Bohl DG, Paek E, Dickenson ER (2017) J Phys D Appl Phys 50:014003CrossRefGoogle Scholar
  45. 45.
    Scialdone O, Corrado E, Galia A, Sirés I (2014) Electrochim Acta 132:15CrossRefGoogle Scholar
  46. 46.
    Hu B, Wu C, Zhang Z, Wang L (2014) Ceram Int 40(5):7015CrossRefGoogle Scholar
  47. 47.
    Tsyganok AI, Otsuka K (1998) Electrochim Acta 43:2589CrossRefGoogle Scholar
  48. 48.
    Sen Gupta SK (2015) Plasma Sources Sci Technol 24:063001CrossRefGoogle Scholar
  49. 49.
    Minero C, Aliberti C (1991) Langmuir 7:928CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chen Zhao
    • 1
    • 2
  • Haiming Yang
    • 1
    • 2
    Email author
  • Maowei Ju
    • 3
  • Xiaotong Zhao
    • 1
    • 2
  • Lixiang Li
    • 1
    • 2
  • Shaoyan Wang
    • 1
  • Baigang An
    • 1
    • 2
  1. 1.School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshanPeople’s Republic of China
  2. 2.Institute of Materials Electrochemistry ResearchUniversity of Science and Technology LiaoningAnshanPeople’s Republic of China
  3. 3.National Marine Environmental Monitoring CenterDalianPeople’s Republic of China

Personalised recommendations