Simulation for the Characteristics of Plasma of the Multi-gap Pseudospark Discharge

  • J. Zhang
  • Y. ZhengEmail author
Original Paper


A high-energy electron beam was produced by a multi-gap pseudospark device under high breakdown voltages. In this work, a simulation model was developed to ascertain the mechanism of the discharge process in the multi-gap pseudospark, which was verified by the triggered multi-gap pseudospark discharge experiment. The characteristics of the plasma were investigated for different anode voltages and pressures. Results suggest the formation of a virtual anode in the cathode aperture during the discharge process, followed by the release of an electron from the plasma in the triggered hollow cavity. The propagation velocity of the ionization wave stimulated by the electron beam is increased with pressure and applied voltage on the anode. The highest density of the particles was found in the region of the cathode aperture. The densities of the particles in the aperture of the intermediate electrodes are higher than at the right adjacent side gaps when the entire gap space is filled with the plasma. The peak of the electron distribution function is found to be situated at higher energies at the beginning of discharge, then the electron distribution function gets shifted to lower energies on the completion of discharge.


Triggered multi-gap pseudospark Ionization wave Electron density Electron energy 



The authors would like to thank Pro. Klaus Frank for a discussion regarding the multi-gap pseudospark discharge process. This work was supported in part by the National Natural Science Foundation of China under Grant No. 11705134, the Project funded by Shaanxi Province Postdoctoral Science Foundation (Grant No. 2017BSHEDZZ120) and the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ1044).


  1. 1.
    Christiansen J, Schultheiss C (1979) Z Phys A 290:35–41CrossRefGoogle Scholar
  2. 2.
    Korolev YD, Landl NV, Geyman VG, Frants OB, Bolotov AV (2017) AIP Adv 7:075116CrossRefGoogle Scholar
  3. 3.
    Korolev YD, Landl NV, Geyman VG, Frants OB, Shemyakin IA, Nekhoroshev VO (2016) Plasma Phys Rep 42:799–807CrossRefGoogle Scholar
  4. 4.
    He W, Zhang L, Bowes D, Yin H, Ronald K, Phelps ADR, Cross AW (2015) Appl Phys Lett 107:133501CrossRefGoogle Scholar
  5. 5.
    Jiang C, Kuthi A, Gundersen MA, Hartmann W (2005) Appl Phys Lett 87:131501CrossRefGoogle Scholar
  6. 6.
    Frank K, Christiansen J (1989) IEEE Trans Plasma Sci 17(7):48–53Google Scholar
  7. 7.
    Yin H, Phelps ADR, He W, Robb GRM, Ronald K, Aitken P, McNeil BWJ, Cross AW, Whyte CG (1998) Nucl Instrum Methods Phys Res Sect A 407:175–180CrossRefGoogle Scholar
  8. 8.
    Zhao J, Yin H, Zhang L, Shu G, He W, Zhang J, Zhang Q, Phelps ADR, Cross AW (2016) Phys Plasma 23:073116CrossRefGoogle Scholar
  9. 9.
    Korolev YD, Koval NN (2018) J Phys D Appl Phys 51:323001CrossRefGoogle Scholar
  10. 10.
    Frank K, Petzenhauser I, Blell U (2007) IEEE Trans Dielectr Electr Insul 14:968–975CrossRefGoogle Scholar
  11. 11.
    Stetter M, Felsner P, Christiansen J, Frank K, Gortler A, Hintz G, Mehr T, Stark R, Tkotz R (1995) IEEE Trans Plasma Sci 23:283–293CrossRefGoogle Scholar
  12. 12.
    Benker W, Christiansen J, Frank K, Gundel H, Hartmann W (1989) IEEE Trans Plasma Sci 17:754–757CrossRefGoogle Scholar
  13. 13.
    Varun D, Pal UN (2018) IEEE Trans Electron Devices 65:1542–1549CrossRefGoogle Scholar
  14. 14.
    Kumar N, Lamba RP, Hossain AM, Pal UN, Phelps ADR, Prakash R (2017) Appl Phys Lett 111:213502CrossRefGoogle Scholar
  15. 15.
    Kumar N, Pal DK, Lamba DP, Pal UN, Prakash R (2017) IEEE Trans Electron Devices 64:2688–2693CrossRefGoogle Scholar
  16. 16.
    Kumar N, Jadon AS, Shukla P, Pal UN, Prakash R (2017) IEEE Trans Plasma Sci 45:405–411CrossRefGoogle Scholar
  17. 17.
    Kumar N, Pal DK, Jadon AS, Pal UN, Rahaman H, Prakash R (2016) Rev Sci Instrum 87:033503CrossRefGoogle Scholar
  18. 18.
    Zhao J, Yin H, Zhang L, Shu G, He W, Phelps ADR, Cross AW, Pang L, Zhang Q (2017) Phys Plasma 24:033118CrossRefGoogle Scholar
  19. 19.
    Zhao J, Yin H, Zhang L, Shu G, He W, Zhang Q (2017) Phys Plasma 24:023105CrossRefGoogle Scholar
  20. 20.
    Zhao J, Yin H, Zhang L, He W, Phelps ADR, Cross AW (2017) Phys Plasma 24:060703CrossRefGoogle Scholar
  21. 21.
    Huang Y, Wang M, Zhang L, Lu B, Feng C, Zhou H (1996) Acta Opt Sin 10:1493–1496 (in Chinese) Google Scholar
  22. 22.
    Lamba RP, Pal UN, Meena BL, Prakash R (2018) Plasma Sources Sci Technol 27:035003CrossRefGoogle Scholar
  23. 23.
    Jain KK, Boggasch E, Reiser M, Rhee MJ (1990) Phys Fluids B 2:2487–2491CrossRefGoogle Scholar
  24. 24.
    Jiang XL, Han LJ (1992) Rev Sci Instrum 63:2420–2421CrossRefGoogle Scholar
  25. 25.
    Frank K et al (1997) IEEE Trans Plasma Sci 25:740–747CrossRefGoogle Scholar
  26. 26.
    Verboncoeur JP, Langdon AB, Gladd NT (1995) Comput Phys Commun 87:199–211CrossRefGoogle Scholar
  27. 27.
    Hagelaar GJM, Pitchford LC (2005) Plasma Sources Sci Technol 14:722–733CrossRefGoogle Scholar
  28. 28.
    Vahedi V, Surendra M (1995) Comput Phys Commun 87:179CrossRefGoogle Scholar
  29. 29.
    Saravanan A, Prince A, Suraj K (2017) Phys. Plasma 24:112106CrossRefGoogle Scholar
  30. 30.
    Shuiliang M, John H, Nandika T (2011) Phys Plasma 18:083301CrossRefGoogle Scholar
  31. 31.
    Weihao T et al (2018) Plasma Sources Sci Technol 27:015005Google Scholar
  32. 32.
    Lagarkov AN, Rutkevich IM (1994) Ionization waves in electric breakdown of gases. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Aerospace Science and TechnologyXidian UniversityXi’anChina
  2. 2.College of Electrical Engineering and AutomationFuzhou UniversityFuzhouChina

Personalised recommendations