Advertisement

Regeneration of a Coked Zeolite via Nonthermal Plasma Process: A Parametric Study

  • Ludovic Pinard
  • Nadim Ayoub
  • Catherine Batiot-DupeyratEmail author
Original Paper
  • 28 Downloads

Abstract

Among alternative techniques to overcome the difficulties associated with thermal regeneration, non-thermal plasma can be considered as one of the most promising technology. The coke trapped in the zeolite micropores can be oxidized at room temperature with a low energy consumption using a dielectric barrier discharge reactor with a pin to plate geometry. The influence of various experimental parameters for coke removal efficiency and ozone production was investigated: input power, gap between the two electrodes, gas flow rate, catalyst mass and compactness. We showed that the efficiency was not strongly increased by increasing the deposited power from 23 to 36 W, but it depends strongly on the mass, so the depth of the wafer. The elimination of coke becomes more difficult as soon as the compactness is increased. The removal of coke is not uniform within the wafer, the one localized into the depth of the wafer is difficult to remove and requires higher input power (> 30 W).

Keywords

Coked zeolite MFI zeolite Regeneration Nonthermal plasma 

Notes

References

  1. 1.
    Bartholomew CH, Argyle MD (2015) Catalysts 5:949–954CrossRefGoogle Scholar
  2. 2.
    Guisnet M, Magnoux P (1997) Catal Today 36:477–483CrossRefGoogle Scholar
  3. 3.
    Eliasson B, Liu CJ, Kogelschatz U (2000) Ind Eng Chem Res 39:1221–1227CrossRefGoogle Scholar
  4. 4.
    Shirazi M, Neyts EC, Bogaerts A (2017) Appl Catal B Environ 205:605–614CrossRefGoogle Scholar
  5. 5.
    Wang Q, Yan BH, Jin Y, Cheng Y (2009) Plasma Chem Plasma Process 29(3):217–228CrossRefGoogle Scholar
  6. 6.
    Karatum O, Deshusses MA (2016) Chem Eng J 294:308–315CrossRefGoogle Scholar
  7. 7.
    Jia L, Al Farouha L, Pinard L, Hedan S, Comparot JD, Dufour A, Ben Tayeb K, Vezin H, Batiot-Dupeyrat C (2017) Appl Catal B Environ 219:82–91CrossRefGoogle Scholar
  8. 8.
    Pinard L, Batiot-Dupeyrat C, Patent no. WO2018087505Google Scholar
  9. 9.
    Aerts R, Somers W, Bogaerts A (2015) ChemSusChem 8:702–716CrossRefGoogle Scholar
  10. 10.
    Veerapandian SKP, Leys C, De Geyter N, Morent R (2017) Catalysts 7:113–146CrossRefGoogle Scholar
  11. 11.
    Lee DH, Song YH, Kim KT, Lee JO (2013) Plasma Chem Plasma Process 33:647–661CrossRefGoogle Scholar
  12. 12.
    Rueangjitt N, Sreethawong T, Chavadej S, Sekiguchi H (2011) Plasma Chem Plasma Process 31:517–534CrossRefGoogle Scholar
  13. 13.
    Fan Y, Cai Y, Li X, Yin H, Chen L, Liu s (2015) J Anal Appl Pyrolysis 11:209–215CrossRefGoogle Scholar
  14. 14.
    Al-Jalal AM, Khan MA (2010) Plasma Chem Plasma Process 30:173–182CrossRefGoogle Scholar
  15. 15.
    Moselhy M, Stark RH, Schonenbach KH, Kogelschatz U (2001) Appl Phys Lett 78:880–884CrossRefGoogle Scholar
  16. 16.
    Toda K, Takaki K, Kato S, Fujiwara T (2001) J Phys D Appl Phys 34:2032–2036CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ludovic Pinard
    • 1
  • Nadim Ayoub
    • 1
  • Catherine Batiot-Dupeyrat
    • 1
    Email author
  1. 1.IC2MP, UMR CNRS 7285, ENSIPUniversité de PoitiersPoitiersFrance

Personalised recommendations