Plasma-Catalytic Dry Reforming of CH4 over Calcium Oxide: Catalyst Structural and Textural Modifications

  • Nassim Bouchoul
  • Elodie Fourré
  • Jean-Michel Tatibouët
  • Catherine Batiot-DupeyratEmail author
Original Paper


The coupling of catalyst and nonthermal plasma for the dry reforming of methane was investigated with a special attention to the textural and structural catalyst modifications under plasma discharge. The reaction was performed using calcium oxide as material located into the DBD plasma reactor, while the deposited power was fixed at 8 W and the total gas flow at 40 mL/min (75% helium as diluent). The results obtained showed that CaO grain size affects the reactant transformation in the range: 250–1000 µm. CH4 and CO2 conversion increases from 18.1 to 21.1% and 8.7 to 11.2% respectively from the biggest to the smallest catalyst grain. Ethane formation is favored when the biggest particles are used, corresponding to the largest gas space between grains, suggesting the preferential recombination of CH3 radicals to form C2H6 in gaseous phase and not at the surface of the solid. The reaction was performed from room temperature to 300 °C, little effect were observed for methane conversion while high CO2 conversion was observed during the 20 min at 300 °C. The characterization of the catalyst after reaction under plasma shows structural catalyst modification and the carbonation of CaO at the highest temperatures. The amount of carbonate species was quantified and the results show that 59 monolayers of CaCO3 are obtained after 1 h of plasma at P = 8 W using a mixture with a CH4/CO2 ratio of 2.


Nonthermal plasma Methane Carbon dioxide Calcium oxide 



The authors grateful acknowledge the ANR for the financial support of the PRC program VALCO2PLAS.


  1. 1.
    Rostrup-Nielsen JR, Sehested J, Norskov JK (2002) Adv Catal 47:65–139Google Scholar
  2. 2.
    Tsang SC, Claridge JB, Green MLH (1995) Catal Today 23:3–15CrossRefGoogle Scholar
  3. 3.
    Hou Z, Chen P, Fang H, Zheng X, Yashima T (2006) Int J Hydrog Energy 31:555–561CrossRefGoogle Scholar
  4. 4.
    Wang Z, Cao X-M, Zhu J, Hu P (2014) J Catal 311:469–480CrossRefGoogle Scholar
  5. 5.
    Hu YH, Ruckenstein E (2004) Adv Catal 48:297–345Google Scholar
  6. 6.
    Kraus M, Egli W, Haffner K, Eliasson B, Kogelschatz U, Wokaun A (2002) Phys Chem Chem Phys 4:668–675CrossRefGoogle Scholar
  7. 7.
    Wang B, Xu G (2003) J Nat Gas Chem 12:178–182Google Scholar
  8. 8.
    Eliasson B, Egli W, Kogelschatz U (1994) Pure Appl Chem 66(6):1275–1286CrossRefGoogle Scholar
  9. 9.
    Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A (2015) Chem Rev 115:13408–13446CrossRefGoogle Scholar
  10. 10.
    Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC (2011) J Phys D Appl Phys 44:274007–274017CrossRefGoogle Scholar
  11. 11.
    Jo S, Kim T, Lee DH, Kang WS, Song YH (2014) Plasma Chem Plasma Process 34:175–186CrossRefGoogle Scholar
  12. 12.
    Scapinello M, Delikonstantis E, Stefanidis GD (2017) Chem Eng Process Intensif 117:120–140CrossRefGoogle Scholar
  13. 13.
    Goujard V, Tatibouët JM, Batiot-Dupeyrat C (2009) IEEE Trans Plasma Sci 37(12):2342–2346CrossRefGoogle Scholar
  14. 14.
    Yap D, Tatibouët JM, Batiot-Dupeyrat C (2018) Catal Today 299:263–271CrossRefGoogle Scholar
  15. 15.
    Gadzhieva NN (2003) High Energy Chem 37(1):43–49CrossRefGoogle Scholar
  16. 16.
    Zheng X, Tan S, Dong L, Li S, Chen H (2015) J Power Sour 274:286–294CrossRefGoogle Scholar
  17. 17.
    Jiang T, Li Y, Liu CJ, Xu GH, Eliasson B, Xue B (2002) Catal Today 72:229–235CrossRefGoogle Scholar
  18. 18.
    Zhang X, Dai B, Zhu A, Gong W, Liu C (2002) Catal Today 72:223–227CrossRefGoogle Scholar
  19. 19.
    Wang W, Kim HH, Van Laer K, Bogaerts A (2018) Chem Eng J 334:2467–2479CrossRefGoogle Scholar
  20. 20.
    Chen HL, Lee HM, Lee SH (2008) Ind Eng Chem Res 47:2122–2130CrossRefGoogle Scholar
  21. 21.
    Yu Q, Kong M, Liu T, Fei J, Zheng X (2012) Plasma Chem Plasma Process 32:153–163CrossRefGoogle Scholar
  22. 22.
    Goujard V, Tatibouët JM, Batiot-Dupeyrat C (2009) Appl Catal A Gen 353:228–235CrossRefGoogle Scholar
  23. 23.
    Ozkan A, Dufour T, Arnoult G, De Keyzer P, Bogaerts A, Reniers F (2015) J CO2 Util 9:74–84CrossRefGoogle Scholar
  24. 24.
    Brock SL, Marquez M, Suib SL, Hayashi Y, Matsumoto H (1998) J Catal 180:225–233CrossRefGoogle Scholar
  25. 25.
    Tu X, Whitehead JC (2014) Int J Hydrog Energy 39:9658–9669CrossRefGoogle Scholar
  26. 26.
    Zhang AJ, Zhu AM, Guo J, Xu Y, Shi C (2010) Chem Eng J 156:601–606CrossRefGoogle Scholar
  27. 27.
    Chung WC, Pan KL, Lee HM, Chang MB (2014) Energy Fuel 28:7621–7631CrossRefGoogle Scholar
  28. 28.
    Kasinathan P, Park S, Choi WC, Hwang YK, Chang JS, Park YK (2014) Plasma Chem Plasma Process 34:1317–1330CrossRefGoogle Scholar
  29. 29.
    Robertson J (2004) Eur Phys J Appl Phys 28:265–291CrossRefGoogle Scholar
  30. 30.
    Zhang YR, Van Laer K, Neyts EC, Bogaerts A (2016) Appl Catal B Env 185:56–67CrossRefGoogle Scholar
  31. 31.
    Zhang QZ, Bogaerts A (2018) Plasma Sour Sci Technol 27:35009–35019CrossRefGoogle Scholar
  32. 32.
    De Bie C, Van Dijk J, Bogaerts A (2015) J Phys Chem C 119:22331–22350CrossRefGoogle Scholar
  33. 33.
    Wang JG, Liu C, Eliassion B (2004) Energy Fuels 18:148–153CrossRefGoogle Scholar
  34. 34.
    Istadi I, Amin NAS (2007) Chem Eng Sci 62:6568–6581CrossRefGoogle Scholar
  35. 35.
    Mirghiasi Z, Bakhtiari F, Darezereshki E, Esmaeilzadeh E (2014) J Ind Eng Chem 20:113–117CrossRefGoogle Scholar
  36. 36.
    Holzer F, Roland U, Kopinke FD (2002) Appl Catal B Env 38:163–181CrossRefGoogle Scholar
  37. 37.
    Abanades JC, Alvarez D (2003) Energy Fuels 17:308–315CrossRefGoogle Scholar
  38. 38.
    Lee DK (2004) Chem Eng J 100:71–77CrossRefGoogle Scholar
  39. 39.
    Wang C, Jia L, Tan Y, Anthony E (2008) Fuel 87(7):1108–1114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nassim Bouchoul
    • 1
  • Elodie Fourré
    • 1
  • Jean-Michel Tatibouët
    • 1
  • Catherine Batiot-Dupeyrat
    • 1
    Email author
  1. 1.IC2MP, ENSIP, Université de Poitiers—UMR CNRS 7285Poitiers cedex 9France

Personalised recommendations