Advertisement

Plasma Chemistry and Plasma Processing

, Volume 39, Issue 4, pp 809–824 | Cite as

Investigation of CO2 Splitting Process Under Atmospheric Pressure Using Multi-electrode Cylindrical DBD Plasma Reactor

  • Guanghui Niu
  • Yue Qin
  • Wenwen Li
  • Yixiang DuanEmail author
Original Paper

Abstract

In this paper, the CO2 splitting process was performed under atmospheric pressure in a multi-electrode cylindrical dielectric barrier discharge (DBD) plasma reactor. The influence of the plasma processing parameters including discharge voltage, discharge length and gas flow rate was investigated. Besides, the effect of the similar specific energy input (SEI) values obtained using different plasma powers and gas flow rates was studied. The experimental results indicated that the CO2 conversion and energy efficiency increased along with the increased discharge length due to the increased residence time and the enhanced electric field. The increase of the applied voltage and hence the plasma power or the decrease of the gas flow rate generated enhanced effect on CO2 conversion while negative influence on energy efficiency. In addition, by comparing the energy efficiency at similar SEI values obtained with different discharge powers and gas flow rates, it was found that the gas flow rate played a more important role in CO2 conversion. The proposed multi-electrode plasma reactor led to the highest CO2 conversion of 18.50% and maximum energy efficiency of 12.83%. Compared with other types of cylindrical DBD plasma reactors, the multi-electrode design proposed in this work can give a similar CO2 conversion and higher energy efficiency. The multi-electrode design can enhance the local electric field at the electrode edges, leading to the enhanced corona discharge and the generation of more micro-discharges, which is considered to be responsible for enhanced CO2 conversion process.

Keywords

CO2 conversion Energy efficiency Multi-electrode cylindrical DBD Reactor design 

Notes

Acknowledgements

The authors are grateful to the financial support from National Natural Science Foundation of China (61605134), and the Innovative Spark Project of Sichuan University (2018SCUH0015 and 2018SCUH0043).

References

  1. 1.
    Zeng Y, Tu X (2016) Plasma-catalytic CO2 hydrogenation at low temperatures. IEEE Trans Plasma Sci 44(4):405–411CrossRefGoogle Scholar
  2. 2.
    Mahammadunnisa S, Reddy EL, Ray D, Subrahmanyam C, Whitehead JC (2013) CO2 reduction to syngas and carbon nanofibres by plasma-assisted in situ decomposition of water. Int J Greenh Gas Control 16(4):361–363CrossRefGoogle Scholar
  3. 3.
    Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731CrossRefGoogle Scholar
  4. 4.
    Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148(3–4):191–205CrossRefGoogle Scholar
  5. 5.
    Snoeckx R, Heijkers S, Wesenbeeck KV, Lenaerts S, Bogaerts A (2016) CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity? Energy Environ Sci 9(3):999–1011CrossRefGoogle Scholar
  6. 6.
    Mcdonough W, Braungart M, Anastas PT, Zimmerman JB (2003) Applying the principles of Green Engineering to cradle-to-cradle design. Environ Sci Technol 37(23):434ACrossRefPubMedGoogle Scholar
  7. 7.
    Albo J, Alvarez-Guerra M, Castano P, Irabien A (2015) ChemInform abstract: towards the electrochemical conversion of carbon dioxide into methanol. Green Chem 46(24):2304–2324CrossRefGoogle Scholar
  8. 8.
    Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43(2):631–675CrossRefPubMedGoogle Scholar
  9. 9.
    Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, Pérezramírez J (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ Sci 6(11):3112–3135CrossRefGoogle Scholar
  10. 10.
    Scheffe JR, Steinfeld A (2014) Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review. Mater Today 17(7):341–348CrossRefGoogle Scholar
  11. 11.
    McDaniel Anthony H, Arifin Chueh, William C, Miller Elizabeth C, Coker Eric N (2013) Sr- and Mn-doped LaAlO3-delta for solar thermochemical H2 and CO production. Energy Environ Sci 6(8):2424–2428CrossRefGoogle Scholar
  12. 12.
    Schenk PM, Thomashall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43CrossRefGoogle Scholar
  13. 13.
    Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30(3):709–732CrossRefPubMedGoogle Scholar
  14. 14.
    Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4(3):1259–1278CrossRefPubMedGoogle Scholar
  15. 15.
    Ahmed N, Shibata Y, Taniguchi T, Izumi Y (2011) Photocatalytic conversion of carbon dioxide into methanol using zinc–copper–M(III) (M = aluminum, gallium) layered double hydroxides. J Catal 279(1):123–135CrossRefGoogle Scholar
  16. 16.
    Medina-Ramos J, Pupillo RC, Keane TP, Dimeglio JL, Rosenthal J (2015) Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts. J Am Chem Soc 137(15):5021–5027CrossRefPubMedGoogle Scholar
  17. 17.
    Jiang Z, Xiao T, Kuznetsov VL, Edwards PP (2010) Turning carbon dioxide into fuel. Philos Trans 368(1923):3343–3364CrossRefGoogle Scholar
  18. 18.
    Snoeckx R, Bogaerts A (2017) Plasma technology—a novel solution for CO2 conversion? Chem Soc Rev 46(19):5805–5863CrossRefPubMedGoogle Scholar
  19. 19.
    Tu X, Whitehead JC (2012) Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature. Appl Catal B 125(33):439–448CrossRefGoogle Scholar
  20. 20.
    Mei D, Tu X (2017) Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: effects of plasma processing parameters and reactor design. J CO2 Util 19:68–78Google Scholar
  21. 21.
    Ray D, Saha R, Ch S (2017) DBD plasma assisted CO2 decomposition: influence of diluent gases. Catalysts 7(9):244CrossRefGoogle Scholar
  22. 22.
    den Harder N, Van den Bekerom DCM, Al RS, Graswinckel MF, Palomares JM, Peeters FJJ, Ponduri S, Minea T, Bongers WA, Van de Sanden MCM (2017) Homogeneous CO2 conversion by microwave plasma: wave propagation and diagnostics. Plasma Process Polym 14:e1600120CrossRefGoogle Scholar
  23. 23.
    Berthelot A, Bogaerts A (2017) Modeling of CO2 splitting in a microwave plasma: How to improve the conversion and energy efficiency? J Phys Chem C 121(15):8236–8251CrossRefGoogle Scholar
  24. 24.
    Spencer LF (2012) The study of CO2 conversion in a microwave plasma/catalyst system. University of Michigan, Ann ArborGoogle Scholar
  25. 25.
    Moss MS, Yanallah K, Allen RWK, Pontiga F (2017) An investigation of CO2 splitting using nanosecond pulsed corona discharge: effect of argon addition on CO2 conversion and energy efficiency. Plasma Sources Sci Technol 26(3):035009CrossRefGoogle Scholar
  26. 26.
    Costache A, Országh J, Skalný JD, Mason NJ (2007) The effect of electrode material on ozone production in negative corona discharge fed by oxygen and carbon dioxide. In: Proceedings of contributed papers, pp 145–149Google Scholar
  27. 27.
    Indarto A, Yang DR, Choi JW, Lee H, Song HK (2007) Gliding arc plasma processing of CO2 conversion. J Hazard Mater 146(1):309–315CrossRefPubMedGoogle Scholar
  28. 28.
    Sun SR, Wang HX, Mei DH, Tu X, Bogaerts A (2017) CO2 conversion in a gliding arc plasma: performance improvement based on chemical reaction modeling. J CO2 Util 17:220–234Google Scholar
  29. 29.
    Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23(1):1–46CrossRefGoogle Scholar
  30. 30.
    Subrahmanyam C, Magureanu M, Renken A, Kiwi-Minsker L (2006) Catalytic abatement of volatile organic compounds assisted by non-thermal plasma: part 1. A novel dielectric barrier discharge reactor containing catalytic electrode. Appl Catal B 65(1–2):150–156CrossRefGoogle Scholar
  31. 31.
    Duan X, Li Y, Ge W, Wang B (2015) Degradation of CO2 through dielectric barrier discharge microplasma. Greenh Gases Sci Technol 5(2):131–140CrossRefGoogle Scholar
  32. 32.
    Aerts R, Somers W, Bogaerts A (2015) Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study. ChemSusChem 8(4):702–716CrossRefPubMedGoogle Scholar
  33. 33.
    Snoeckx R, Zeng Y, Tu X, Bogaerts A (2015) Plasma-based dry reforming: improving the conversion and energy efficiency in a dielectric barrier discharge. RSC Adv 5(38):29799–29808CrossRefGoogle Scholar
  34. 34.
    Wang L, Yi Y, Wu C, Guo H, Tu X (2017) One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis. Angew Chem 56(44):13679–13683CrossRefGoogle Scholar
  35. 35.
    Ozkan A, Dufour T, Arnoult G, Keyzer PD, Bogaerts A, Reniers F (2015) CO2–CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge. J CO2 Util 9:74–81Google Scholar
  36. 36.
    Niu G, Li Y, Tang J, Wang X, Duan Y (2018) Optical and electrical analysis of multi-electrode cylindrical dielectric barrier discharge (DBD) plasma reactor. Vacuum 157:465–474CrossRefGoogle Scholar
  37. 37.
    Niu G, Guo G, Tang J, Li Y, Wang X, Duan Y (2019) Design and electrical analysis of multi-electrode cylindrical dielectric barrier discharge (DBD) plasma reactor. IEEE Trans Plasma Sci 47(1):419–426CrossRefGoogle Scholar
  38. 38.
    Pinhão N, Moura A, Branco JB, Neves J (2016) Influence of gas expansion on process parameters in non-thermal plasma plug-flow reactors: a study applied to dry reforming of methane. Int J Hydrogen Energy 41(22):9245–9255CrossRefGoogle Scholar
  39. 39.
    Scapinello M, Martini LM, Dilecce G, Tosi P (2016) Conversion of CH4/CO2 by a nanosecond repetitively pulsed discharge. J Phys D Appl Phys 49(7):075602CrossRefGoogle Scholar
  40. 40.
    Sun Y, Zeng M, Cui Z (2008) Research on electrical characteristics of dielectric barrier discharge and dielectric barrier corona discharge. Electr Eng Mater 51(9):539–545Google Scholar
  41. 41.
    Fridman AA (2008) Plasma chemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  42. 42.
    Wang B, Yan W, Ge W, Duan X (2013) Methane conversion into higher hydrocarbons with dielectric barrier discharge micro-plasma reactor. J Energy Chem 22(6):876–882CrossRefGoogle Scholar
  43. 43.
    Han SU, Dong GJ, Min SK, Suk H (2012) Density dependence of capillary plasma on the pressure and applied voltage. Phys Plasmas 19(2):024501CrossRefGoogle Scholar
  44. 44.
    Shrestha R, Tyata RB, Subedi DP (2013) Effect of applied voltage in electron density of homogeneous dielectric barrier discharge at atmospherice pressure. Himal Phys 4:10–13CrossRefGoogle Scholar
  45. 45.
    Wu AJ, Zhang H, Li XD, Lu SY, Du CM, Yan JH (2015) Determination of spectroscopic temperatures and electron density in rotating gliding arc discharge. IEEE Trans Plasma Sci 43(3):836–845CrossRefGoogle Scholar
  46. 46.
    Mei D, He YL, Liu S, Yan J, Tu X (2016) Optimization of CO2 conversion in a cylindrical dielectric barrier discharge reactor using design of experiments. Plasma Process Polym 13(5):544–556CrossRefGoogle Scholar
  47. 47.
    Dong LF, Li XC, Yin ZQ, Qian SF, Ouyang JT, Wang L (2001) Self-organized filaments in dielectric barrier discharge in air at atmospheric pressure. Chin Phys Lett 18(10):1380CrossRefGoogle Scholar
  48. 48.
    Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Bogaerts A, Reniers F (2016) The influence of power and frequency on the filamentary behavior of a flowing DBD-application to the splitting of CO2. Plasma Sources Sci Technol 25(2):025013CrossRefGoogle Scholar
  49. 49.
    Paulussen S, Verheyde B, Tu X, De Bie C, Martens T, Petrovic D, Bogaerts A, Sels B (2010) Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Sci Technol 19(3):34015–34016CrossRefGoogle Scholar
  50. 50.
    Nunnally T, Gutsol K, Rabinovich A, Fridman A, Gutsol A, Kemoun A (2011) Dissociation of CO2 in a low current gliding arc plasmatron. J Phys D Appl Phys 44(27):274009CrossRefGoogle Scholar
  51. 51.
    Wang Q, Yan BH, Jin Y, Cheng Y (2009) Investigation of dry reforming of methane in a dielectric barrier discharge reactor. Plasma Chem Plasma Process 29(3):217–228CrossRefGoogle Scholar
  52. 52.
    Khassin AA, Pietruszka BL, Heintze M, Parmon VN (2004) The impact of a dielectric barrier discharge on the catalytic oxidation of methane over Ni-containing catalyst. React Kinet Catal Lett 82(1):131–137CrossRefGoogle Scholar
  53. 53.
    Kriegseis J, Möller B, Grundmann S, Tropea C (2011) Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. J Electrost 69(4):302–312CrossRefGoogle Scholar
  54. 54.
    Holub M (2012) On the measurement of plasma power in atmospheric pressure DBD plasma reactors. Int J Appl Electromagn Mech 39:81–87CrossRefGoogle Scholar
  55. 55.
    Chen P, Shen J, Ran T, Yang T, Yin Y (2017) Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma. Plasma Sci Technol 19(12):123–128CrossRefGoogle Scholar
  56. 56.
    Cenian A, Chernukho A, Borodin V (1995) Modeling of plasma-chemical reactions in gas mixture of CO2 lasers. II. Theoretical model and its verification. Contrib Plasma Phys 35(3):273–296CrossRefGoogle Scholar
  57. 57.
    Yu Q, Tong L, Fei J, Zheng X (2012) Characteristics of the decomposition of CO2 in a dielectric packed-bed plasma reactor. Plasma Chem Plasma Process 32(1):153–163CrossRefGoogle Scholar
  58. 58.
    Pacheco-Pacheco M, Pacheco-Sotelo J, Moreno-Saavedra H, Diaz-Gomez JA, Mercado-Cabrera A, Yousfi M (2007) DBD-corona discharge for degradation of toxic gases. Plasma Sci Technol 9(6):682–685CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Guanghui Niu
    • 1
  • Yue Qin
    • 2
  • Wenwen Li
    • 3
  • Yixiang Duan
    • 4
    Email author
  1. 1.School of Aeronautics and Astronautics, Research Center of Analytical InstrumentationSichuan UniversityChengduChina
  2. 2.School of Chemical Engineering, Research Center of Analytical InstrumentationSichuan UniversityChengduChina
  3. 3.West China School of Public Health, Research Center of Analytical InstrumentationSichuan UniversityChengduChina
  4. 4.Research Center of Analytical Instrumentation, School of Manufacturing Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations