Study on Generation of Glow Discharge Plasma in Air and Surface Modification of Wool Fabric

  • Wenzheng LiuEmail author
  • Liying Zhu
  • Xiaozhong Chen
  • Luxiang Zhao
  • Sijia Sun
  • Yiqing Wang
Original Paper


A lamellar electrode structure is proposed to achieve the generation of a large-area plasma and the effective processing of the wool fabric with the electrode on only one side of the treated material. The lamellar electrode can form the curved electric field lines passing through the discharge air gap and the wool fabric, creating the condition for the action of plasma. Meanwhile, the micron-scale discharge air gap is constructed through the direct contact between the electrode and the treated material. Specifically, it can effectively inhibit the development of the electron avalanche, thereby achieving a through-type glow discharge in air between the electrode and the wool fabric under the strong electric field. Through the scanning electron microscope and X-ray photoelectron spectroscopy tests, it can be observed that the scales on the surface of wool fiber are effectively destroyed and the polar groups are introduced to the surface of wool fiber after the plasma treatment. Obviously, the wettability of wool fiber is greatly improved, and the wetting time is reduced from more than 1800 s to less than 0.5 s.


Atmospheric pressure glow discharge Wool fabric Surface modification Lamellar electrode 



This work is supported by the National Natural Science Foundation of China (No. 51577011).


  1. 1.
    Shahidi S, Ghoranneviss M, Dalalsharifi S (2015) Preparation of multifunctional wool fabric using chitosan after plasma treatment. J Text Inst 106:1127–1134CrossRefGoogle Scholar
  2. 2.
    Cai Z, Qiu Y (2008) Effect on the anti-felt properties of atmospheric pressure plasma treated wool. J Appl Polym Sci 107:1142–1146CrossRefGoogle Scholar
  3. 3.
    Kan CW, Yuen CWM (2010) Effect of nature of gas on some surface physico-chemical properties of plasma-treated wool fiber. J Adhes Sci Technol 24:99–111CrossRefGoogle Scholar
  4. 4.
    Barani H, Calvimontes A (2014) Effects of oxygen plasma treatment on the physical and chemical properties of wool fiber surface. Plasma Chem Plasma Process 34:1291–1302CrossRefGoogle Scholar
  5. 5.
    Kan CW, Yuen CWM, Hung ON (2013) Improving the pilling property of knitted wool fabric with atmospheric pressure plasma treatment. Surf Coat Technol 228:S588–S592CrossRefGoogle Scholar
  6. 6.
    Şahan G, Demir A, Gökçe Y (2016) Improving certain properties of wool fibers by applying chitosan nanoparticles and atmospheric plasma treatment. Fiber Polym 17:1007–1012CrossRefGoogle Scholar
  7. 7.
    Haji A, Mehrizi MK, Sharifzadeh J (2016) Dyeing of wool with aqueous extract of cotton pods improved by plasma treatment and chitosan: optimization using response surface methodology. Fiber Polym 17:1480–1488CrossRefGoogle Scholar
  8. 8.
    Li SZ, Wu Q, Zhang J et al (2010) Development of an atmospheric-pressure homogeneous and cold Ar/O2 plasma source operating in glow discharge. Phys Plasmas 17:20Google Scholar
  9. 9.
    Xi M, Li YL, Shang SY et al (2008) Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing. Surf Coat Technol 202:6029–6033CrossRefGoogle Scholar
  10. 10.
    Ren CS, Wang K, Nie QY et al (2008) Surface modification of PE film by DBD plasma in air. Appl Surf Sci 255:3421–3425CrossRefGoogle Scholar
  11. 11.
    Sun J, Yao L, Sun S et al (2011) ESR study of atmospheric pressure plasma jet irradiated aramid fibers. Surf Coat Technol 205:5312–5317CrossRefGoogle Scholar
  12. 12.
    Panda PK, Rastogi D, Jassal M et al (2012) Effect of atmospheric pressure helium plasma on felting and low temperature dyeing of wool. J Appl Polym Sci 124:4289–4297CrossRefGoogle Scholar
  13. 13.
    Moon SY, Han JW, Choe W (2006) Feasibility study of material surface treatment using an atmospheric large-area glow plasma. Thin Solid Films 506:355–359CrossRefGoogle Scholar
  14. 14.
    Zheng P, Liu K, Wang J et al (2012) Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma. Appl Surf Sci 259:494–500CrossRefGoogle Scholar
  15. 15.
    Kurniawan D, Kim BS, Lee HY et al (2012) Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites. Compos Part B Eng 43:1010–1014CrossRefGoogle Scholar
  16. 16.
    Niu J, Liu D, Wu Y (2011) Large-area and uniform surface modification of polymers by barrier discharge plasmas. Surf Coat Technol 205:3434–3437CrossRefGoogle Scholar
  17. 17.
    Wang HB, Sun WT, Li HP et al (2006) Characteristics of radio-frequency, atmospheric-pressure glow discharges with air using bare metal electrodes. Appl Phys Lett 89:161502CrossRefGoogle Scholar
  18. 18.
    Shao T, Liu F, Hai B et al (2017) Surface modification of epoxy using an atmospheric pressure dielectric barrier discharge to accelerate surface charge dissipation. IEEE Trans Dielectr Electr Insul 24:1557–1565CrossRefGoogle Scholar
  19. 19.
    Bondarenko PN, Emelyanov OA, Shemet MV (2014) Investigation of a single dielectric barrier discharge in submillimeter air gaps: uniform field. Tech Phys 59:838–846CrossRefGoogle Scholar
  20. 20.
    Liu W, Chen X, Lei X et al (2017) Surface processing of polyester canvas using atmospheric pressure air glow discharge plasma. Plasma Chem Plasma Process 37:465–474CrossRefGoogle Scholar
  21. 21.
    Shao T, Yu Y, Zhang C et al (2010) Excitation of atmospheric pressure uniform dielectric barrier discharge using repetitive unipolar nanosecond-pulse generator. IEEE Trans Dielectr Electr Insul 17:1830–1837CrossRefGoogle Scholar
  22. 22.
    Liu W, Ma C, Zhao S et al (2018) Exploration to generate atmospheric pressure glow discharge plasma in air. Plasma Sci Technol 20:035401CrossRefGoogle Scholar
  23. 23.
    Li G, Le PS, Li HP et al (2010) Effects of the shielding cylinder and substrate on the characteristics of an argon radio-frequency atmospheric glow discharge plasma jet. J Appl Phys 107:1685Google Scholar
  24. 24.
    Bornholdt S, Wolter M, Kersten H (2010) Characterization of an atmospheric pressure plasma jet for surface modification and thin film deposition. Eur Phys J D 60:653–660CrossRefGoogle Scholar
  25. 25.
    Shao T, Zhang C, Wang R et al (2015) Comparison of atmospheric-pressure He and Ar plasma jets driven by microsecond pulses. IEEE Trans Plasma Sci 43:726–732CrossRefGoogle Scholar
  26. 26.
    Wang CX, Du M, Lv JC et al (2015) Effect of wetting pretreatment on structure and properties of plasma induced chitosan grafted wool fabric. Fiber Polym 16:404–412CrossRefGoogle Scholar
  27. 27.
    Gawish SM, Saudy MA, Aboel-Ola SM et al (2011) The effect of low-temperature plasma for improving wool and chitosan-treated wool fabric properties. J Text Inst 102:180–188CrossRefGoogle Scholar
  28. 28.
    Liu W, Niu J, Zhao S et al (2018) Study on atmospheric pressure glow discharge based on AC–DC coupled electric field. J Appl Phys 123:023303CrossRefGoogle Scholar
  29. 29.
    Liu W, Zhao Q, Wang T et al (2016) Degradation of organic pollutants using atmospheric pressure glow discharge plasma. Plasma Chem Plasma Process 36:1011–1020CrossRefGoogle Scholar
  30. 30.
    Liu W, Zhao S, Niu J et al (2017) Microelectrode-assisted low-voltage atmospheric pressure glow discharge in air. Phys Plasmas 24:093519CrossRefGoogle Scholar
  31. 31.
    Holub M (2012) On the measurement of plasma power in atmospheric pressure DBD plasma reactors. Int J Appl Electromagn 39:81–87CrossRefGoogle Scholar
  32. 32.
    Song Y, Liu D, Ji L et al (2012) The inactivation of resistant Candida albicans in a sealed package by cold atmospheric pressure plasmas. Plasma Process Polym 9:17–21CrossRefGoogle Scholar
  33. 33.
    Subrahmanyam C, Renken A, Kiwi-Minsker L (2007) Novel catalytic dielectric barrier discharge reactor for gas-phase abatement of isopropanol. Plasma Chem Plasma Process 27:13–22CrossRefGoogle Scholar
  34. 34.
    Liu W, Chen X, Wang T et al (2017) Study on glow discharge in one-dimensional transverse non-uniform electric field and surface processing of aramid fabric. Plasma Chem Plasma Process 37:1607–1620CrossRefGoogle Scholar
  35. 35.
    Wang CX, Qiu YP (2007) Two sided modification of wool fabrics by atmospheric pressure plasma jet: influence of processing parameters on plasma penetration. Surf Coat Technol 201:6273–6277CrossRefGoogle Scholar
  36. 36.
    Xu H, Peng S, Wang C et al (2009) Influence of absorbed moisture on antifelting property of wool treated with atmospheric pressure plasma. J Appl Polym Sci 113:3687–3692CrossRefGoogle Scholar
  37. 37.
    Wang X, Shen X, Xu W (2012) Effect of hydrogen peroxide treatment on the properties of wool fabric. Appl Surf Sci 258:10012–10016CrossRefGoogle Scholar
  38. 38.
    Wang C, Qiu Y (2012) Study on wettability improvement and its uniformity of wool fabric treated by atmospheric pressure plasma jet. J Appl Polym Sci 123:1000–1006CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wenzheng Liu
    • 1
    Email author
  • Liying Zhu
    • 1
  • Xiaozhong Chen
    • 1
  • Luxiang Zhao
    • 1
  • Sijia Sun
    • 2
  • Yiqing Wang
    • 2
  1. 1.School of Electrical EngineeringBeijing Jiaotong UniversityBeijingChina
  2. 2.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations