Advertisement

Hydrogen Production from Methane Decomposition Using a Mobile and Elongating Arc Plasma Reactor

  • Mahsa Kheirollahivash
  • Fariborz Rashidi
  • Mohammad Mahdi Moshrefi
Original Paper
  • 17 Downloads

Abstract

Hydrogen and solid carbon were produced through methane decomposition in a plasma reactor with a parallel set of screw type helix and rod-like electrodes. The novel configuration led to the 3-dimensional movement of plasma zone in the axial and angular directions as well as arc elongation. The effect of arc elongation and movement at various angular velocities of high voltage electrode was investigated on the reactor performance in terms of methane conversion, hydrogen yield, and energy yield. In addition, the influence of fluid flow direction was considered. Methane conversion of 47% and hydrogen production rate of 132.7 ml/min with the energy yield of 36.8 g/kWh were achieved at stable operating conditions. The deposition rate of carbon was 35 mg/min which had a graphite-like structure. A reaction pathway is proposed according to reaction path analysis in order to interpret the underlying plasma chemical process.

Keywords

Plasma reactor Methane decomposition Hydrogen Elongated arc Mobile plasma 

References

  1. 1.
    Khoja AH, Tahir M, Amin NAS (2017) Dry reforming of methane using different dielectric materials and DBD plasma reactor configurations. Energy Convers Manag 144:262–274CrossRefGoogle Scholar
  2. 2.
    Khalifeh O, Taghvaei H, Mosallanejad A, Rahimpour MR, Shariati A (2016) Extra pure hydrogen production through methane decomposition using nanosecond pulsed plasma and Pt–Re catalyst. Chem Eng J 294:132–145CrossRefGoogle Scholar
  3. 3.
    Cho DL, Kim H-N, Lee M, Cho E (2015) Production of pure hydrogen from methane by low temperature plasma processing. Korean J Chem Eng 32(12):2519–2523.  https://doi.org/10.1007/s11814-015-0107-x CrossRefGoogle Scholar
  4. 4.
    Moshrefi MM, Rashidi F (2014) Hydrogen production from methane by DC spark discharge: effect of current and voltage. J Nat Gas Sci Eng 16:85–89CrossRefGoogle Scholar
  5. 5.
    Mizeraczyk J, Jasiński M (2016) Plasma processing methods for hydrogen production. Eur Phys J Appl Phys 75(2):24702CrossRefGoogle Scholar
  6. 6.
    Mizeraczyk J, Urashima K, Jasiński M, Dors M (2014) Hydrogen production from gaseous fuels by plasmas-a review. Int J Plasma Env Sci Technol 8(2):89–97Google Scholar
  7. 7.
    Ibrahim AA, Fakeeha AH, Al-Fatesh AS, Abasaeed AE, Khan WU (2015) Methane decomposition over iron catalyst for hydrogen production. Int J Hydrog Energy 40(24):7593–7600CrossRefGoogle Scholar
  8. 8.
    Moshrefi MM, Rashidi F, Bozorgzadeh HR (2015) Use of a DC discharge in a plasma reactor with a rotating ground electrode for production of synthesis gas by partial oxidation of methane. Res Chem Intermed 41(9):5941–5959CrossRefGoogle Scholar
  9. 9.
    Ghorbanzadeh A, Matin N (2005) Methane conversion to hydrogen and higher hydrocarbons by double pulsed glow discharge. Plasma Chem Plasma Process 25(1):19–29CrossRefGoogle Scholar
  10. 10.
    Li D, Li X, Bai M, Tao X, Shang S, Dai X, Yin Y (2009) CO2 reforming of CH4 by atmospheric pressure glow discharge plasma: a high conversion ability. Int J Hydrog Energy 34(1):308–313CrossRefGoogle Scholar
  11. 11.
    Aleknaviciute I, Karayiannis T, Collins M, Xanthos C (2013) Methane decomposition under a corona discharge to generate COx-free hydrogen. Energy 59:432–439CrossRefGoogle Scholar
  12. 12.
    Horvath G, Zahoran M, Mason N, Matejcik S (2011) Methane decomposition leading to deposit formation in a DC positive CH4–N2 corona discharge. Plasma Chem Plasma Process 31(2):327–335CrossRefGoogle Scholar
  13. 13.
    Kundu SK, Kennedy EM, Gaikwad VV, Molloy TS, Dlugogorski BZ (2012) Experimental investigation of alumina and quartz as dielectrics for a cylindrical double dielectric barrier discharge reactor in argon diluted methane plasma. Chem Eng J 180:178–189CrossRefGoogle Scholar
  14. 14.
    Kim TK, Lee WG (2012) Reaction between methane and carbon dioxide to produce syngas in dielectric barrier discharge system. J Ind Eng Chem 18(5):1710–1714CrossRefGoogle Scholar
  15. 15.
    Li XD, Zhang H, Yan SX, Yan JH, Du CM (2013) Hydrogen production from partial oxidation of methane using an AC rotating gliding arc reactor. IEEE Trans Plasma Sci 41(1):126–132CrossRefGoogle Scholar
  16. 16.
    Zhang H, Du C, Wu A, Bo Z, Yan J, Li X (2014) Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production. Int J Hydrog Energy 39(24):12620–12635CrossRefGoogle Scholar
  17. 17.
    Zhang H, Wang W, Li X, Han L, Yan M, Zhong Y, Tu X (2018) Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma: a chemical kinetics study. Chem Eng J 345:67–78CrossRefGoogle Scholar
  18. 18.
    Rahim I, Nomura S, Mukasa S, Toyota H (2015) Decomposition of methane hydrate for hydrogen production using microwave and radio frequency in-liquid plasma methods. Appl Therm Eng 90:120–126CrossRefGoogle Scholar
  19. 19.
    Mizeraczyk J, Jasiński M, Nowakowska H, Dors M (2012) Studies of atmospheric-pressure microwave plasmas used for gas processing. Nukleonika 57:241–247Google Scholar
  20. 20.
    Chung W-C, Chang M-B (2016) Dry reforming of methane by combined spark discharge with a ferroelectric. Energy Convers Manag 124:305–314CrossRefGoogle Scholar
  21. 21.
    Moshrefi MM, Rashidi F, Bozorgzadeh HR, Haghighi ME (2013) Dry reforming of methane by DC spark discharge with a rotating electrode. Plasma Chem Plasma Process 33(2):453–466CrossRefGoogle Scholar
  22. 22.
    Li X-S, Lin C-K, Shi C, Xu Y, Wang Y-N, Zhu A-M (2008) Stable kilohertz spark discharges for high-efficiency conversion of methane to hydrogen and acetylene. J Phys D Appl Phys 41(17):175203CrossRefGoogle Scholar
  23. 23.
    Lee DH, Song Y-H, Kim K-T, Lee J-O (2013) Comparative study of methane activation process by different plasma sources. Plasma Chem Plasma Process 33(4):647–661CrossRefGoogle Scholar
  24. 24.
    Lee DH, Kim K-T, Cha MS, Song Y-H (2010) Plasma-controlled chemistry in plasma reforming of methane. Int J Hydrog Energy 35(20):10967–10976CrossRefGoogle Scholar
  25. 25.
    Yang Y (2003) Direct non-oxidative methane conversion by non-thermal plasma: modeling study. Plasma Chem Plasma Process 23(2):327–346CrossRefGoogle Scholar
  26. 26.
    Yang Y (2003) Direct non-oxidative methane conversion by non-thermal plasma: experimental study. Plasma Chem Plasma Process 23(2):283–296CrossRefGoogle Scholar
  27. 27.
    Pristavita R, Mendoza-Gonzalez N-Y, Meunier J-L, Berk D (2010) Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology. Plasma Chem Plasma Process 30(2):267–279CrossRefGoogle Scholar
  28. 28.
    Pristavita R, Meunier J-L, Berk D (2011) Carbon nano-flakes produced by an inductively coupled thermal plasma system for catalyst applications. Plasma Chem Plasma Process 31(2):393–403CrossRefGoogle Scholar
  29. 29.
    Okeke L, Störi H (1991) Plasma-chemical decomposition of methane during diamond synthesis. Plasma Chem Plasma Process 11(4):489–499CrossRefGoogle Scholar
  30. 30.
    Lee H, Lee D-H, Song Y-H, Choi WC, Park Y-K, Kim DH (2015) Synergistic effect of non-thermal plasma–catalysis hybrid system on methane complete oxidation over Pd-based catalysts. Chem Eng J 259:761–770CrossRefGoogle Scholar
  31. 31.
    Ogo S, Sekine Y (2017) Catalytic reaction assisted by plasma or electric field. Chem Rec 17(8):726–738CrossRefGoogle Scholar
  32. 32.
    Moshrefi MM, Rashidi F (2018) Hydrogen production from methane decomposition in cold plasma reactor with rotating electrodes. Plasma Chem Plasma Process 38(3):503–515.  https://doi.org/10.1007/s11090-018-9875-5 CrossRefGoogle Scholar
  33. 33.
    Janev R, Reiter D (2002) Collision processes of CH y and CH y + hydrocarbons with plasma electrons and protons. Phys Plasmas 9(9):4071–4081CrossRefGoogle Scholar
  34. 34.
    Legrand J, Diamy A, Hrach R, Hrachova V (1998) Kinetics of reactions in CH4\N2 afterglow plasma: a simplified model. Vacuum 50(3–4):491–495CrossRefGoogle Scholar
  35. 35.
    Morgan NN, ElSabbagh M (2017) Hydrogen production from methane through pulsed DC plasma. Plasma Chem Plasma Process 37(5):1375–1392CrossRefGoogle Scholar
  36. 36.
    Kado S, Urasaki K, Sekine Y, Fujimoto K, Nozaki T, Okazaki K (2003) Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature. Fuel 82(18):2291–2297CrossRefGoogle Scholar
  37. 37.
    Chiremba E, Zhang K, Kazak C, Akay G (2017) Direct nonoxidative conversion of methane to hydrogen and higher hydrocarbons by dielectric barrier discharge plasma with plasma catalysis promoters. AIChE J 63(10):4418–4429.  https://doi.org/10.1002/aic.15769 CrossRefGoogle Scholar
  38. 38.
    Gao Y, Zhang S, Sun H, Wang R, Tu X, Shao T (2018) Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges. Appl Energy 226:534–545.  https://doi.org/10.1016/j.apenergy.2018.06.006 CrossRefGoogle Scholar
  39. 39.
    Khalifeh O, Mosallanejad A, Taghvaei H, Rahimpour MR, Shariati A (2016) Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies. Appl Energy 169:585–596CrossRefGoogle Scholar
  40. 40.
    Moshrefi MM, Rashidi F, Bozorgzadeh HR, Zekordi SM (2012) Methane conversion to hydrogen and carbon black by DC-spark discharge. Plasma Chem Plasma Process 32(6):1157–1168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mahsa Kheirollahivash
    • 1
  • Fariborz Rashidi
    • 1
  • Mohammad Mahdi Moshrefi
    • 1
  1. 1.Chemical Engineering DepartmentAmirkabir University of TechnologyTehranIran

Personalised recommendations