Advertisement

Plasma Chemistry and Plasma Processing

, Volume 39, Issue 1, pp 277–292 | Cite as

Plasma Based Synthesis of Nanomaterials for Development of Plasmon Enhanced Infrared Responsive Optoelectronic Device

  • Deepshikha Gogoi
  • Amreen A. Hussain
  • Arup R. PalEmail author
Original Paper
  • 58 Downloads

Abstract

We report plasma based fabrication of an optoelectronic device with plasmon enhanced infrared sensitivity realized by integrating plasmonic gold nanoparticles (Au NPs) with an organic semiconductor matrix. A blend of plasma polymerized aniline (PPA)-Rubrene, prepared by a novel plasma based method acts as the semiconductor matrix for charge transport in the device geometry. Significantly improved photovoltaic property of the device with an open circuit voltage (VOC) of 1.08 V is obtained with the addition of Au NPs in the device. We experimentally demonstrate very efficient plasmon generated charge transfer between Au NPs and PPA-Rubrene system leading to significant enhancement of infrared responsivity of 2200% at the plasmon absorption band of Au. This study demonstrates how plasma based processes can be utilized to prepare plasmonic nano-materials and also to synthesize organic semiconductor materials suitable for development of plasmonic charge generating devices responsive to infrared region of the electromagnetic spectrum.

Keywords

Plasma process Surface plasmon Optoelectronic device Infrared responsive 

Notes

Acknowledgements

This work is financially supported by the Institute of Advanced Study in Science and Technology, Guwahati, India. The authors are thankful to SAIF-NEHU, Shillong for providing the TEM and HRTEM characterization facility.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

11090_2018_9945_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2884 kb)

References

  1. 1.
    Jang YH, Jang YJ, Kim S, Quan LN, Chung K, Kim DH (2016) Chem Rev 116(24):14982–15034CrossRefGoogle Scholar
  2. 2.
    Gormley AJ, Larson N, Sadekar S, Robinson R, Ray A, Ghandehari H (2012) Nano Today 7:158–167CrossRefGoogle Scholar
  3. 3.
    Dinh TV, Fales A, Griffin GD, Khoury C, Liu Y, Ngo H, Norton SJ, Register J, Wang HN, Yuan H (2013) Nanoscale 5(21):10127–10140CrossRefGoogle Scholar
  4. 4.
    Sobhani A, Knight MW, Wang Y, Zheng B, King NS, Brown LV, Fang Z, Nordlander P, Halas NJ (2013) Nat Commun 4:1643CrossRefGoogle Scholar
  5. 5.
    Cacciato G, Bayle M, Pugliara A, Bonafos C, Zimbone M, Privitera V, Grimaldi MG, Carles R (2015) Nanoscale 7:13468CrossRefGoogle Scholar
  6. 6.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Nat Mater 9:193–204CrossRefGoogle Scholar
  7. 7.
    Ren X, Cheng J, Zhang S, Li X, Rao T, Huo L, Hou J, Choy WCH (2016) Small 12:5200–5207CrossRefGoogle Scholar
  8. 8.
    Ma XC, Dai Y, Yu L, Huang BB (2016) Light Sci Appl 5:e16017CrossRefGoogle Scholar
  9. 9.
    Moroz P, Razgoniaeva N, Vore A, Eckard H, Kholmicheva N, McDarby A, Razgoniaev AO, Ostrowski AD, Khon D, Zamkov M (2017) ACS Photonics 4:2290–2297CrossRefGoogle Scholar
  10. 10.
    Wu K, Chen J, Mcbride JR, Lian T (2015) Science 349:632–635CrossRefGoogle Scholar
  11. 11.
    Barad HN, Ginsburg A, Cohen H, Rietwyk KJ, Keller DA, Tirosh S, Bouhadana Y, Anderson AY, Zaban A (2016) Adv Mater Interfaces 3:1500789CrossRefGoogle Scholar
  12. 12.
    Barman T, Hussain AA, Sharma Pal AR (2015) Sci Rep 5:18276CrossRefGoogle Scholar
  13. 13.
    Miao J, Hu W, Jing Y, Luo W, Liao L, Pan A, Wu S, Cheng J, Chen X, Lu W (2015) Small 11:2392–2398CrossRefGoogle Scholar
  14. 14.
    Kulkarni AP, Noone KM, Munechika K, Guyer SR, Ginger DS (2010) Nano Lett 10(4):1501–1505CrossRefGoogle Scholar
  15. 15.
    Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y, Duan X (2011) Nat Commun 579:1589Google Scholar
  16. 16.
    Senanayake P, Hung CH, Shapiro J, Lin A, Liang B, Willians BS, Huffaker DL (2011) Nano Lett 11(12):5279–5283CrossRefGoogle Scholar
  17. 17.
    Ahn S, Rourke D, Park W (2016) J Opt 18:033001CrossRefGoogle Scholar
  18. 18.
    Chen X, Zhao C, Rothberg L, Ng MK (2008) Appl Phys Lett 93:123302CrossRefGoogle Scholar
  19. 19.
    Gan Q, Bartoli FJ, Kafafi ZH (2013) Adv Mater 25:2385–2396CrossRefGoogle Scholar
  20. 20.
    Su Z, Wang L, Li Y, Zhang G, Zhao H, Yang H, Ma Y, Chu B, Li W (2013) ACS Appl Mater Interfaces 5:12847–12853CrossRefGoogle Scholar
  21. 21.
    Stratakis E, Kymakis E (2013) Mater Today 16:133–146CrossRefGoogle Scholar
  22. 22.
    Teng NW, Yang SS, Chen FC (2018) IEEE J Photovolt 8:752–756CrossRefGoogle Scholar
  23. 23.
    Chen FC, Wu JL, Lee CL, Hong Y, Kuo CH, Huang MH (2009) Appl Phys Lett 95:013305CrossRefGoogle Scholar
  24. 24.
    Ge J, Luo M, Zou W, Peng W, Duan H (2016) Appl Phys Express 9:084101CrossRefGoogle Scholar
  25. 25.
    Li W, Valentine JG (2017) Nanophotonics 6(1):177–191CrossRefGoogle Scholar
  26. 26.
    Mubeen S, Sosa GH, Moses D, Lee J, Moskovits M (2011) Nano Lett 11:5548–5552CrossRefGoogle Scholar
  27. 27.
    McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Nat Mater 4:138–142CrossRefGoogle Scholar
  28. 28.
    Hussain AA, Pal AR, Patil DS (2014) Appl Phys Lett 104:193301CrossRefGoogle Scholar
  29. 29.
    Hussain AA, Sharma B, Barman T, Pal AR (2016) ACS Appl Mater Interfaces 8:4258–4265CrossRefGoogle Scholar
  30. 30.
    Hussain AA, Pal AR, Patil DS (2014) Org Electron 15:2107–2115CrossRefGoogle Scholar
  31. 31.
    Jia W, Chen Q, Chen L, Yuan D, Xiang J, Chen Y, Xiong Z (2016) J Phys Chem C 120:8380–8386CrossRefGoogle Scholar
  32. 32.
    Li W, Li S, Duan L, Chen H, Wang L, Dong G, Xu Z (2016) Org Electron 37:346–351CrossRefGoogle Scholar
  33. 33.
    Yang D, Zhou X, Ma D (2013) Org Electron 14:3019–3023CrossRefGoogle Scholar
  34. 34.
    Hussain AA, Pal AR (2017) J Mater Chem C 5:1136–1148CrossRefGoogle Scholar
  35. 35.
    Lu X, Vaillancourt J, Gu G (2017) J Phys D Appl Phys 50:135101CrossRefGoogle Scholar
  36. 36.
    Chen S, Wang Y, Liu Q, Shi G, Liu Z, Lu K, Han L, Ling X, Zhang H, Cheng S, Ma W (2018) Adv Energy Mater 8:1701194CrossRefGoogle Scholar
  37. 37.
    Chang CY, Chang HY, Chen CY, Tsai MW, Chang YT, Lee SC, Tang SF (2007) Appl Phys Lett 91:163107CrossRefGoogle Scholar
  38. 38.
    Chang CC, Sharma YD, Kim YS, Bur JA, Shenoi RV, Krishna S, Huang D, Lin SY (2010) Nano Lett 10:1704–1709CrossRefGoogle Scholar
  39. 39.
    Alves H, Pinto RM, Macoas ES (2013) Nat Commun 4:1842CrossRefGoogle Scholar
  40. 40.
    Zeng X, Zhang D, Duan L, Wang L, Dong G, Qiu Y (2007) Appl Surf Sci 253:6047–6051CrossRefGoogle Scholar
  41. 41.
    Takeya J, Tsukagoshi K, Aoyagi Y, Takenobu T, Iwasa Y (2005) Jpn J Appl Phys 44:L1393–L1396CrossRefGoogle Scholar
  42. 42.
    Hasegawa T, Takeya J (2009) Sci Technol Adv Mater 10:024314CrossRefGoogle Scholar
  43. 43.
    Hussain AA, Sharma S, Pal AR, Bailung H, Chutia J, Patil DS (2012) Plasma Chem Plasma Process 32(4):817–832CrossRefGoogle Scholar
  44. 44.
    Kim MS, Cho ES, Park DH, Jung H, Bang J, Joo J (2011) Nanoscale Res Lett 6:405CrossRefGoogle Scholar
  45. 45.
    Irkhin P, Ryasnyanskiy A, Koehler M, Biaggio I (2012) Phys Rev B Condens Matter Phys 86:085143CrossRefGoogle Scholar
  46. 46.
    Amendola V, Pilot R, Frasconi M, Marago OM, Iatì MA (2017) J Phys Condens Matter 29:203002CrossRefGoogle Scholar
  47. 47.
    Mendieta RT, Espinosa DV, Sabater S, Lancis J, Vega GM, Mata JA (2016) Sci Rep 6:30478CrossRefGoogle Scholar
  48. 48.
    Ghosh SK, Pal T (2007) Chem Rev 107:4797–4862CrossRefGoogle Scholar
  49. 49.
    El-Brolossy TA, Abdallah T, Mohamed MB, Abdallah S, Easawi K, Negm S, Talaat H (2008) Eur Phys J Special Topics 153:361–364CrossRefGoogle Scholar
  50. 50.
    Zeng LH, Wang MZ, Hu H, Nie B, Yu YQ, Wu CY, Wang L, Hu JG, Xie C, Liang FX, Luo LB (2013) ACS Appl Mater Interfaces 5:9362–9366CrossRefGoogle Scholar
  51. 51.
    Luo LB, Chen JJ, Wang MZ, Hu H, Wu CY, Li Q, Wang L, Huang JA, Liang FX (2014) Adv Funct Mater 24:2794–2800CrossRefGoogle Scholar
  52. 52.
    Zheng L, Yu P, Hu K, Teng F, Chen H, Fang X (2016) ACS Appl Mater Interfaces 8:33924–33932CrossRefGoogle Scholar
  53. 53.
    Zhao C, Liang Z, Su M, Liu P, Mai W, Xie W (2015) ACS Appl Mater Interfaces 7:25981–25990CrossRefGoogle Scholar
  54. 54.
    Li G, Liu L, Wu G, Chen W, Qin S, Wang Y, Zhang T (2016) Small 12:5019–5026CrossRefGoogle Scholar
  55. 55.
    Sundararaman R, Narang P, Jermyn AS, Goddard WA, Atwater HA (2014) Nat Commun 5:5788CrossRefGoogle Scholar
  56. 56.
    Matsui T, Li Y, Hsu MHM, Merckling C, Outlon RF, Cohen LF, Maier SA (2018) Adv Funct Mater 28:1705859CrossRefGoogle Scholar
  57. 57.
    Bernardi M, Mustafa J, Neaton JB, Louie SG (2015) Nat Commun 6:7044CrossRefGoogle Scholar
  58. 58.
    Gall D (2016) J Appl Phys 119:085101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Deepshikha Gogoi
    • 1
  • Amreen A. Hussain
    • 1
    • 2
  • Arup R. Pal
    • 1
    Email author
  1. 1.Plasma Nanotech Laboratory, Physical Sciences DivisionInstitute of Advanced Study in Science and TechnologyGuwahatiIndia
  2. 2.Facilitation Centre for Industrial Plasma TechnologiesInstitute for Plasma ResearchGandhinagarIndia

Personalised recommendations