Advertisement

Plasma Chemistry and Plasma Processing

, Volume 39, Issue 1, pp 165–185 | Cite as

Quantitative Analysis of Ozone and Nitrogen Oxides Produced by a Low Power Miniaturized Surface Dielectric Barrier Discharge: Effect of Oxygen Content and Humidity Level

  • Ayman A. AbdelazizEmail author
  • Tatsuo Ishijima
  • Naoki Osawa
  • Takafumi Seto
Original Paper
  • 202 Downloads

Abstract

This study presented a quantitative evaluation of the performance of a low power miniaturized SDBD source for the production of ozone and nitrogen oxides as benchmarks of long-lived RONS. The effects of varying oxygen and humidity on the trend of the production efficiency are investigated. The oxygen content and the humidity had no noticeable effect on the total power consumed, but their level in the feeding gas has a strong impact on the production of NxOy. It is found also that there is an optimum level of the oxygen content and the humidity for the production of NO2 and N2O. The analysis of the results indicated that the nitrogen excited species, especially \({\text{N}}_{2 } \left( {A^{3} \varSigma_{u}^{ + } } \right)\) and N(2D) play vital roles in the production of the nitrogen oxides, particularly the NO, which considered as the main source for the other NxOy in the present system. Interestingly, it is found that the humidity has a positive effect on the NO2 production, while it has a negative effect on the N2O and O3, which implied that the present SDBD is a strong oxidizer for the formed NO. The rise in the gas temperature in the present SDBD was negligible and has no effect on the production of nitrogen oxides, while the temperature of the plasma channel might affect the RONS production efficiency. Investigating the production mechanisms and the energy efficiency, of the formed nitrogen oxides, unravels for the first time the performance of the SDBD for nitrogen fixation.

Keywords

Surface dielectric barrier discharge Ozone production Nitrogen oxides production Effect of oxygen content Effect of humidity Role of excited species 

Notes

Acknowledgements

This work was partially supported by the Chubu foundation fellowship program (2015). Dr. Ayman A. Abdelaziz thanks Chubu foundation for supporting his fellowship research at the Kanazawa University. Thanks are due to Mr. Takafumi Tsuji and Mr. Shingo Hayamizu for the assistance offered during the measurements of the nitrogen oxides by the FTIR.

References

  1. 1.
    Morgan NN (2009) Atmospheric pressure dielectric barrier discharge chemical and biological applications. Int J Phys Sci 4:885–892Google Scholar
  2. 2.
    Kim H-H (2004) Nonthermal plasma processing for air-pollution control: a historical Rreview, current issues, and future prospects. Plasma Process Polym 1:91–110CrossRefGoogle Scholar
  3. 3.
    Brandenburg R (2017) Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol 26:053001CrossRefGoogle Scholar
  4. 4.
    Benard N, Moreau E (2014) Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids vol:55CrossRefGoogle Scholar
  5. 5.
    Abdelaziz A, Ishijima T, Seto T, Osawa N, Wedaa H, Otani Y (2016) Characterization of surface dielectric barrier discharge influenced by intermediate frequency for ozone production. Plasma Sources Sci Technol 25:035012CrossRefGoogle Scholar
  6. 6.
    Abdelaziz A, Seto T, Abdel-Salam M, Otani Y (2012) Performance of a surface dielectric barrier discharge based reactor for destruction of naphthalene in an air stream. J Phys D Appl Phys 45:115201CrossRefGoogle Scholar
  7. 7.
    Shimizu K, Yamada M, Kanamori M, Blajan M (2010) Basic study of bacteria inactivation at low discharge voltage by using microplasmas. IEEE Trans Ind Appl 46:641–649CrossRefGoogle Scholar
  8. 8.
    Malik MA, Kolb JF, Sun Y, Schoenbach KH (2011) Comparative study of NO removal in surface-plasma and volume-plasma reactors based on pulsed corona discharges. J Hazard Mater 197:220–228CrossRefGoogle Scholar
  9. 9.
    Malik MA, Hughes D, Heller R, Schoenbach KH (2015) Surface plasmas versus volume plasma: energy deposition and ozone generation in air and oxygen. Plasma Chem Plasma Process 35:697–704CrossRefGoogle Scholar
  10. 10.
    Masuda S, Akutsu K, Kuroda M, Awatsu Y, Shibuya Y (1988) A ceramic-based ozonizer using high-frequency discharge. IEEE Trans Ind Appl 24:223–232CrossRefGoogle Scholar
  11. 11.
    McAdams R (2001) Prospects for non-thermal atmospheric plasmas for pollution abatement. J Phys D Appl Phys 34:2810–2821CrossRefGoogle Scholar
  12. 12.
    Pavlovich MJ, Clark DS, Graves DB (2014) Quantification of air plasma chemistry for surface disinfection. Plasma Sources Sci Technol 23:065036CrossRefGoogle Scholar
  13. 13.
    Jeon J, Klaempfl TG, Zimmermann JL, Morfill GE, Shimizu T (2014) Sporicidal properties from surface micro-discharge plasma under different plasma conditions at different humidities. New J Phys 16:103007CrossRefGoogle Scholar
  14. 14.
    Maisch T, Shimizu T, Li YF, Heinlin J, Karrer S, Morfill G, Zimmermann JL (2012) Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS ONE 7:e34610CrossRefGoogle Scholar
  15. 15.
    Morfill GE, Shimizu T, Steffes B, Schmidt HU (2009) Nosocomial infections—a new approach towards preventive medicine using plasmas. New J Phys 11:115019CrossRefGoogle Scholar
  16. 16.
    Jeon J, Rosentreter TM, Li Y, Isbary G, Thomas HM, Zimmermann JL et al (2014) Bactericidal agents produced by surface micro-discharge (SMD) plasma by controlling gas compositions. Plasma Process Polym 11:426–436CrossRefGoogle Scholar
  17. 17.
    Koga K, Thapanut S, Amano T, Seo H, Itagaki N, Hayashi N et al (2016) Simple method of improving harvest by nonthermal air plasma irradiation of seeds of Arabidopsis thaliana (L.). Appl Phys Express 9:016201CrossRefGoogle Scholar
  18. 18.
    Shimizu T, Sakiyama Y, Graves DB, Zimmermann JL, Morfill GE (2012) The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure. New J Phys 14:103028CrossRefGoogle Scholar
  19. 19.
    Li S, Ma X, Jiang Y, Cao X (2014) Acetamiprid removal in wastewater by the low-temperature plasma using dielectric barrier discharge. Ecotoxicol Environ Saf 106:146–153CrossRefGoogle Scholar
  20. 20.
    Pekárek S (2012) Experimental study of surface dielectric barrier discharge in air and its ozone production. J Phys D Appl Phys 45:075201CrossRefGoogle Scholar
  21. 21.
    Pekárek S (2013) Asymmetric properties and ozone production of surface dielectric barrier discharge with different electrode configurations. Eur Phys J D 67:94CrossRefGoogle Scholar
  22. 22.
    Malik MA, Schoenbach KH, Heller R (2014) Coupled surface dielectric barrier discharge reactor-ozone synthesis and nitric oxide conversion from air. Chem Eng J 256:222–229CrossRefGoogle Scholar
  23. 23.
    Mastanaiah N, Banerjee P, Johnson JA, Roy S (2013) Examining the role of ozone in surface plasma sterilization using dielectric barrier discharge (DBD) plasma. Plasma Process Polym 10:1120–1133CrossRefGoogle Scholar
  24. 24.
    Pavlovich MJ, Chang H-W, Sakiyama Y, Clark DS, Graves DB (2013) Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J Phys D Appl Phys 46:145202CrossRefGoogle Scholar
  25. 25.
    Jodzis S, Smolinski T, Sowka P et al (2011) Ozone synthesis under surface discharges in oxygen: application of a concentric actuator. IEEE Trans Plasma Sci 39:1055–1060CrossRefGoogle Scholar
  26. 26.
    Schnabel U, Andrasch M, Weltmann K-D, Ehlbeck J (2014) Inactivation of vegetative microorganisms and bacillus atrophaeus endospores by reactive nitrogen species (RNS). Plasma Processes Polym 11:110–116CrossRefGoogle Scholar
  27. 27.
    Sakai S, Matsuda M, Wang D, Namihira T, Akiyama H, Okamoto K et al (2009) Nitric oxide generator based on pulsed arc discharge. Acta Phys Pol A 115:1104–1106CrossRefGoogle Scholar
  28. 28.
    Douat C, Hübner S, Engeln R, Benedikt J (2016) Production of nitric/nitrous oxide by an atmospheric pressure plasma jet. Plasma Sources Sci Technol 25:025027CrossRefGoogle Scholar
  29. 29.
    Oehmigen K, Hähnel M, Brandenburg R, Wilke C, Weltmann KD, von Woedtke T (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process Polym 7:250–257CrossRefGoogle Scholar
  30. 30.
    Chen CW, Lee HM, Chang MB (2008) Inactivation of aquatic microorganisms by low-frequency AC discharges. IEEE Trans Plasma Sci 36:215–219CrossRefGoogle Scholar
  31. 31.
    Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001CrossRefGoogle Scholar
  32. 32.
    Tian W, Kushner MJ (2014) Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue. J Phys D Appl Phys 47:165201CrossRefGoogle Scholar
  33. 33.
    Patil BS, Wang Q, Hessel V, Lang J (2015) Plasma N2-fixation: 1900–2014. Catal Today 256:49–66CrossRefGoogle Scholar
  34. 34.
    Simek M, Pekarek S, Prukner V (2012) Ozone production using a power modulated surface dielectric barrier discharge in dry synthetic air. Plasma Chem Plasma Process 32:743–754CrossRefGoogle Scholar
  35. 35.
    Hong D, Rabat H, Bauchire JM, Chang MB (2014) Measurement of ozone production in non-thermal plasma actuator using surface dielectric barrier discharge. Plasma Chem Plasma Process 34:887–897CrossRefGoogle Scholar
  36. 36.
    Herron JT (2001) Modeling studies of the formation and destruction of NO in pulsed barrier discharges in nitrogen and air. Plasma Chem Plasma Process 21:581–610CrossRefGoogle Scholar
  37. 37.
    Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2004) Evaluated kinetic and photochemical data for atmospheric chemistry: volume I—gas phase reactions of Ox, HOx, NOx and SOx species. Atoms. Chem. Phys. 4:1461–1738CrossRefGoogle Scholar
  38. 38.
    Teodoru S, Kusano Y, Bogaerts A (2012) The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge. Plasma Process Polym 9:652–689CrossRefGoogle Scholar
  39. 39.
    Tálský A, Štec O, Pazderka M, Kudrle V (2017) Kinetic study of atmospheric pressure nitrogen plasma afterglow using quantitative electron spin resonance spectroscopy. J Spectrosc 2017:1–10CrossRefGoogle Scholar
  40. 40.
    Forte M, Jolibois J, Pons J, Moreau E, Touchard G, Cazalens M (2007) Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control. Exp Fluids 43:917–928CrossRefGoogle Scholar
  41. 41.
    Kotsonis M (2015) Diagnostics for characterisation of plasma actuators. Meas Sci Technol 26:092001CrossRefGoogle Scholar
  42. 42.
    Abdelaziz A, Seto T, Abdel-Salam M, Otani Y (2014) Influence of N2/O2 mixtures on decomposition of naphthalene in surface dielectric barrier discharge based reactor. Plasma Chem Plasma Process 34:1371–1385CrossRefGoogle Scholar
  43. 43.
    Font GI, Enloe CL, Newcomb JY, Teague AL, Vasso AR, McLaughlin TE (2011) Effects of oxygen content on dielectric behavior barrier discharge plasma actuator behavior. AIAA J 49:1366–1373CrossRefGoogle Scholar
  44. 44.
    Koeta O, Blin-Simiand N, Pasquiers S, Jordan F, Bary A (2012) Effect of oxygen percentage on the removal of acetaldehyde by dielectric barrier discharge. Int J Plasma Environ Sci Technol 6:227–232Google Scholar
  45. 45.
    Pan J, Tan Z, Liu Y, Pan G, Wang X (2015) Effects of oxygen concentration on atmospheric-pressure pulsed dielectric barrier discharges in argon/oxygen mixture. Phys Plasmas 22:093515CrossRefGoogle Scholar
  46. 46.
    Guo Y, Liao X, Fu M, Huang H, Ye D (2015) Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process. J Environ Sci (China) 28:187–194CrossRefGoogle Scholar
  47. 47.
    Cooray V, Rahman M (2005) Efficiencies for production of NOx and O3 by streamer discharges in air at atmospheric pressure. J Electrostat 63:977–983CrossRefGoogle Scholar
  48. 48.
    Kogelschatz U, Baessler P (1987) Determination of nitrous oxide and dinitrogen pentoxide concentrations in the output of air-fed ozone generators of high power density. Ozone Sci Eng 9:195–206CrossRefGoogle Scholar
  49. 49.
    Kogelschatz U, Eliasson B, Hirth M (1988) Ozone generation from oxygen and air-discharge physics and reaction mechanisms. Ozone Sci Eng 10:367–378CrossRefGoogle Scholar
  50. 50.
    Marode E, Djermoune D, Dessante P, Deniset C, Ségur P, Bastien F, Bourdon A, Laux C (2009) Physics and applications of atmospheric non-thermal air plasma with reference to environment. Plasma Phys Control Fusion 51:124002CrossRefGoogle Scholar
  51. 51.
    Gherardi N, Osawa N, Tsuji T, Ogiso R, Yoshioka Y, Hoder T (2017) Effect of nitrogen addition to ozone generation characteristics by diffuse and filamentary dielectric barrier discharges at atmospheric pressure. Eur Phys J Appl Phys 78:20804CrossRefGoogle Scholar
  52. 52.
    Hensel K, Machala Z, Tardiveau P (2009) Capillary microplasmas for ozone generation. Eur Phys J Appl Phys 47:22813–22818CrossRefGoogle Scholar
  53. 53.
    Whitehead JC (2010) Plasma catalysis: a solution for environmental problems. Pure Appl Chem. 82:1329–1336CrossRefGoogle Scholar
  54. 54.
    Heintze M, Pietruszka B (2004) Plasma catalytic conversion of methane into syngas: the combined effect of discharge activation and catalysis. Catal Today 89:21–25CrossRefGoogle Scholar
  55. 55.
    Yan K, Kanazawa S, Ohkubo T, Nomoto Y (1999) Oxidation and reduction processes during NOx removal with corona-induced nonthermal plasma. Plasma Chem Plasma Process 19:421–443CrossRefGoogle Scholar
  56. 56.
    Mok YS, Lee H-J (2006) Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption–reduction technique. Fuel Process Technol 87:591–597CrossRefGoogle Scholar
  57. 57.
    Jodzis S (2011) Application of technical kinetics for macroscopic analysis of ozone synthesis process. Ind Eng Chem Res 50:6053–6060CrossRefGoogle Scholar
  58. 58.
    Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J, Zimmermann JL (2009) Plasma medicine: an introductory review. New J Phys 11:115012CrossRefGoogle Scholar
  59. 59.
    Jodzis S (2002) Effect of silica packing on ozone synthesis from oxygen–nitrogen mixtures. Ozone Sci Eng 25:63–72CrossRefGoogle Scholar
  60. 60.
    Fan X, Kang S, Li J, Zhu T (2018) Conversion of dilute nitrous oxide (N2O) in N2 and N2–O2 mixtures by plasma and plasma-catalytic processes. RSC Adv 8:26998–27007CrossRefGoogle Scholar
  61. 61.
    Penetrante BM, Bardsley JN, Hsiao MC (1997) Kinetic analysis of non-thermal plasmas used for pollution control. Jpn J Appl Phys 36:5007–5017CrossRefGoogle Scholar
  62. 62.
    Yin S-E, Sun B-M, Gao X-D, Xiao H-P (2009) The effect of oxygen and water vapor on nitric oxide conversion with a dielectric barrier discharge reactor. Plasma Chem Plasma Process 29:421–431CrossRefGoogle Scholar
  63. 63.
    Trinh Q-H, Kim SH, Mok YS (2016) Removal of dilute nitrous oxide from gas streams using a cyclic zeolite adsorption–plasma decomposition process. Chem Eng J 302:12–22CrossRefGoogle Scholar
  64. 64.
    Fouad L, Elhazek S (1995) Effect of humidity on positive corona discharge in a three electrode system. J Electrostat 35:21–30CrossRefGoogle Scholar
  65. 65.
    Fridman A (ed) (2008) Plasma chemistry. Cambridge University Press, New YorkGoogle Scholar
  66. 66.
    Abdelaziz AA, Ishijima T, Seto T (2018) Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition. Phys Plasmas 25:043512CrossRefGoogle Scholar
  67. 67.
    Hähnel M, von Woedtke T, Weltmann K-D (2010) Influence of the air humidity on the reduction of bacillus spores in a defined environment at atmospheric pressure using a dielectric barrier surface discharge. Plasma Process Polym 7:244–249CrossRefGoogle Scholar
  68. 68.
    Chiper A, Simiand N, Jorand F, Pasquiers S, Popa G, Postel C (2006) Influence of water vapour on acetaldehyde removal efficiency by DBD. J Optoelectron Adv Mater 8:208–211Google Scholar
  69. 69.
    Sivachandiran L, Khacef A (2016) In situ and ex situ NO oxidation assisted by sub-microsecond pulsed multi-pin-to-plane corona discharge: the effect of pin density. RSC Adv 6:29983–29995CrossRefGoogle Scholar
  70. 70.
    Tang X, Wang J, Yi H, Zhao S, Gao F, Chu C (2018) Nitrogen fixation and NO conversion using dielectric barrier discharge reactor: identification and evolution of products. Plasma Chem Plasma Process 38:485–501CrossRefGoogle Scholar
  71. 71.
    Ono R, Teramoto Y, Oda T (2010) Effect of humidity on gas temperature in the afterglow of pulsed positive corona discharge. Plasma Sources Sci Technol 19:015009CrossRefGoogle Scholar
  72. 72.
    McKay K, Liu DX, Rong MZ, Iza F, Kong MG (2012) Generation and loss of reactive oxygen species in low-temperature atmospheric-pressure RF He + O2 + H2O plasmas. J Phys D Appl Phys 45:172001CrossRefGoogle Scholar
  73. 73.
    Lukes P, Clupek M, Babicky V, Janda V, Sunka P (2005) Generation of ozone by pulsed corona discharge over water surface in hybrid gas–liquid electrical discharge reactor. J Phys D Appl Phys 38:409–416CrossRefGoogle Scholar
  74. 74.
    Ma T, Zhao Q, Liu J, Zhong F (2016) Study of humidity effect on benzene decomposition by the dielectric barrier discharge nonthermal plasma reactor. Plasma Sci Technol 18:686–692CrossRefGoogle Scholar
  75. 75.
    Matsui K, Ikenaga N, Sakudo N (2015) Effects of humidity on sterilization of Geobacillus stearothermophilus spores with plasma-excited neutral gas. Jpn J Appl Phys 54:p. 06GD02Google Scholar
  76. 76.
    Junhong C, Pengxiang W (2005) Effect of relative humidity on electron distribution and ozone production by DC coronas in air. IEEE Trans Plasma Sci 33:808–812CrossRefGoogle Scholar
  77. 77.
    Herron JT, Green DS (2001) Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions. Plasma Chem Plasma Process 21:459–481CrossRefGoogle Scholar
  78. 78.
    Gray D, Lissi E, Heicklen J (1972) Reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide. J Phys Chem 76:1919–1924CrossRefGoogle Scholar
  79. 79.
    Mok YS, Koh DJ, Shin DN, Kim KT (2004) Reduction of nitrogen oxides from simulated exhaust gas by using plasma–catalytic process. Fuel Process Technol 86:303–317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ayman A. Abdelaziz
    • 1
    Email author
  • Tatsuo Ishijima
    • 2
  • Naoki Osawa
    • 3
  • Takafumi Seto
    • 4
  1. 1.Physics Department, Faculty of ScienceAssiut UniversityAssiutEgypt
  2. 2.Research Center for Sustainable Energy and TechnologyKanazawa UniversityKakuma-machi, KanazawaJapan
  3. 3.Department of Electrical and Electronic Engineering, Center for Electric, Optic and Energy ApplicationsKanazawa Institute of TechnologyNonoichiJapan
  4. 4.School of Natural SystemKanazawa UniversityKakuma-machi, KanazawaJapan

Personalised recommendations