Plasma Chemistry and Plasma Processing

, Volume 39, Issue 1, pp 241–258 | Cite as

An Experimental Study of Plasma Cracking of Methane Using DBDs Aimed at Hydrogen Production

  • Ruggero BarniEmail author
  • Roberto Benocci
  • Nicolò Spinicchia
  • H. Eduardo Roman
  • Claudia Riccardi
Original Paper


We report the results of an experimental campaign about the production of hydrogen from methane cracking using a non-thermal plasma. Experiments have been performed using a nanosecond pulse high-voltage generator in a cylindrical dielectric barrier electrode setup. Our experiments show that high methane conversion could be achieved by pulsed electrical discharges in DBD configuration. Conversion could be as high as 60%, with a hydrogen yield of about 25%. The energy costs lie in the range 30–40 eV for molecule. Another set of experiments using a traditional sinusoidal dielectric barrier discharge reactor suggests that argon dilution could improve the performances of plasma methane reforming. A similar suggestion could be inferred by analyzing the results of numerical simulations of the gas-phase chemical kinetics evolution under pulsed electrical discharge conditions.


Plasma discharges Atmospheric pressure plasmas Dielectric barrier discharges Hydrogen reformer Methane cracking 


  1. 1.
    Dutta S (2014) J Ind Eng Chem 20:1148CrossRefGoogle Scholar
  2. 2.
    Mazloomi K, Gomes C (2012) Renew Sustain Energy Rev 16:3024CrossRefGoogle Scholar
  3. 3.
    Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Energy Policy 36:4356CrossRefGoogle Scholar
  4. 4.
    Dutton AG (2003) Wind Eng 27:239CrossRefGoogle Scholar
  5. 5.
    Lide DR (2007) CRC handbook of chemistry and physics, 88th edn. CRC Press, Boca RatonGoogle Scholar
  6. 6.
    Aasberg-Petersen K, Bak Hansen JH, Christensen TS, Dybkjaer I, Seier-Christensen P, Stub-Nielsen C, Winter-Madsen SEL, Rostrup-Nielsen JR (2001) Appl Catal A 221:379CrossRefGoogle Scholar
  7. 7.
    Crabtree GW, Dresselhaus MS, Buchanan MV (2004) Phys Today 57:39CrossRefGoogle Scholar
  8. 8.
    Fridman A (2008) Plasma chemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. 9.
    Lesueur H, Czernichowski A, Chapelle J (1994) Int J Hydrog Energy 19:139CrossRefGoogle Scholar
  10. 10.
    Sekiguchi H, Mori Y (2003) Thin Solid Films 435:44CrossRefGoogle Scholar
  11. 11.
    Barni R, Quintini A, Piselli M, Riccardi C (2008) J Appl Phys 103:063302CrossRefGoogle Scholar
  12. 12.
    Shapoval V, Marotta E, Ceretta C, Konjevic N, Ivkovic M, Schiorlin M, Paradisi C (2014) Plasma Proc Polym 11:787CrossRefGoogle Scholar
  13. 13.
    Paulmier T, Fulcheri L (2005) Chem Eng J 106:59CrossRefGoogle Scholar
  14. 14.
    Cormier JM, Rusu I (2001) J Phys D 34:2798CrossRefGoogle Scholar
  15. 15.
    Bromberg L, Cohn DR, Rabinovich A, Alexeev N, Samokhin A, Ramprasad R, Tamhankar S (2000) Int J Hydrog Energy 25:1157CrossRefGoogle Scholar
  16. 16.
    Kogelschatz U (2003) Plasma Chem Plasma Proc 23:1CrossRefGoogle Scholar
  17. 17.
    Riccardi C, Barni R, Fontanesi M, Tosi P (2000) Chem Phys Lett 392:66CrossRefGoogle Scholar
  18. 18.
    Muller S, Zahn RJ (2007) Contrib Plasma Phys 47:520CrossRefGoogle Scholar
  19. 19.
    Spinicchia N, Maffi S, De Angeli M, Gervasini G, Nardone A, Zizak G (2012) I.F.P. Internal Report FP12/02Google Scholar
  20. 20.
    Chantry PJ (1987) J Appl Phys 62:1141CrossRefGoogle Scholar
  21. 21.
    Benson SW (1982) Thermochemical kinetics. Wiley, New YorkGoogle Scholar
  22. 22.
    Siliprandi RA, Zanini S, Grimoldi E, Fumagalli F, Barni R, Riccardi C (2011) Plasma Chem Plasma Proc 31:353CrossRefGoogle Scholar
  23. 23.
    Barni R, Biganzoli I, Dell’Orto EC, Riccardi C (2015) J Appl Phys 118:143301CrossRefGoogle Scholar
  24. 24.
    Argueso M, Roble G, Sanz J (2005) Rev Sci Instrum 76:065107CrossRefGoogle Scholar
  25. 25.
    Biganzoli I, Barni R, Riccardi C, Gurioli A, Pertile R (2013) Plasma Sources Sci Technol 22:025009CrossRefGoogle Scholar
  26. 26.
    Biganzoli I, Barni R, Riccardi C (2013) Rev Sci Instrum 84:016101CrossRefGoogle Scholar
  27. 27.
    Laux CO, Spence TG, Kruger CH, Zare RN (2003) Plasma Sources Sci Technol 12:125CrossRefGoogle Scholar
  28. 28.
    Barni R, Riccardi C (2018) Europ Phys J B 72:62Google Scholar
  29. 29.
    Zielinski WL (1987) CRC handbook of chromatography. CRC Press, Boca Raton FLGoogle Scholar
  30. 30.
    Li X-S, Zhu A-M, Wang K-J, Xu Y, Song Z-M (2004) Catal Today 98:617CrossRefGoogle Scholar
  31. 31.
    Siliprandi RA, Roman HE, Barni R, Riccardi C (2008) J Appl Phys 104:063309CrossRefGoogle Scholar
  32. 32.
    Croccolo F, Barni R, Zanini S, Palvarini A, Riccardi C (2008) J Phys Conf Ser 100:062023CrossRefGoogle Scholar
  33. 33.
    Sommerer TJ, Kushner MJ (1992) J Appl Phys 71:1654CrossRefGoogle Scholar
  34. 34.
    Font GI, Morgan WL, Mennenga G (2002) J Appl Phys 91:3530CrossRefGoogle Scholar
  35. 35.
    Rehman F, Lozano-Parada JH, Zimmerman WB (2012) Int J Hydrog Energy 37:17678CrossRefGoogle Scholar
  36. 36.
    Barni R, Broggi C, Benocci R, Riccardi C (2006) Eur Phys J Appl Phys 35:135CrossRefGoogle Scholar
  37. 37.
    Barni R, Esena P, Riccardi C (2005) J Appl Phys 97:073301CrossRefGoogle Scholar
  38. 38.
    Patel V (2012) Chemical kinetics. Intech, RijekaCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica G.OcchialiniUniversità degli Studi di Milano-BicoccaMilanItaly
  2. 2.Dipartimento di Scienze dell’Ambiente e della TerraUniversità degli Studi di Milano-BicoccaMilanItaly
  3. 3.Istituto di Fisica del PlasmaCNR Consiglio Nazionale delle RicercheMilanItaly

Personalised recommendations