Plasma Chemistry and Plasma Processing

, Volume 39, Issue 1, pp 227–240 | Cite as

Improved Performance for Toluene Abatement in a Continuous-Flow Pulsed Sliding Discharge Reactor Based on Three-Electrode Configuration

  • Nan Jiang
  • Cheng Qiu
  • Lianjie Guo
  • Kefeng Shang
  • Na Lu
  • Jie Li
  • Yan Wu
Original Paper


The degradation of toluene by non-thermal plasma has been evaluated in a continuous-flow sliding dielectric barrier discharge (SLDBD) reactor based on three-electrode configuration and compared with a traditional surface dielectric barrier discharge reactor. In order to optimize the electrical and geometry parameters of the SLDBD reactor, the effects of positive pulsed high-voltage (U+pulse), negative DC voltage (U−DC), pulse-forming capacitance (Cp)), inter-electrode gap, discharge length, and dielectric material have been systematically investigated. Morphological characterizations demonstrate that the steamer channels can propagate more homogeneously along the dielectric surface when a sufficient U−DC is applied under the condition of slight increase in energy. The average discharge power of the SLDBD reactor mainly depends on U+pulse, while which is less affected by U−DC. Unexpectedly, both toluene degradation efficiency and energy yield using the SLDBD increase significantly as U−DC, indicating that VOC degradation is not only determined by the energy primarily provided by U+pulse, but also depends on the drift of the ionized species induced by U−DC. Increasing Cp enhances the energy injected into the SLDBD reactor and leads to a higher toluene degradation efficiency, but lowers the energy yield when the other parameters remains unchanged. The optimal Cp is 0.67 nF. Shorter inter-electrode gap and longer discharge length appear to be more advantageous in terms of toluene degradation and energy yield. Quartz plate exhibits remarkably better degradation and energy performance than ceramic and polytef ones, leading to the maximum toluene degradation efficiency of 58% and energy yield of 0.85 g/kWh in this work.


VOCs degradation Pulsed discharge plasma Sliding DBD Three-electrode configuration Plasma reactor optimization 



This work was supported by National Natural Science Foundation of China (Nos. 51507026 and 51177007), General Financial Grant from the China Postdoctoral Science Foundation (No. 2015M580223), Special Financial Grant from the China Postdoctoral Science Foundation (No. 2016T90221), Fundamental Research Funds for the Central Universities (Nos. DUT18LK31 and DUT17RC(4)05), and State Key Laboratory of Electrical Insulation and Power Equipment (EIPE18206).


  1. 1.
    Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kroesen G, Whitehead JC, Murphy AB, Gutsol AF, Starikovskaia S (2012) The 2012 Plasma roadmap. J Phys D Appl Phys 45:253001CrossRefGoogle Scholar
  2. 2.
    Tang S, Yuan D, Rao Y, Li N, Qi J, Cheng T, Sun A, Gu J, Huang H (2018) Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water. Chem Eng J 337:446–454CrossRefGoogle Scholar
  3. 3.
    Wang T, Cao Y, Qu G, Sun Q, Xia T, Guo X, Jia H, Zhu L (2018) Novel Cu(II)-EDTA decomplexation by discharge plasma oxidation and coupled Cu removal by alkaline precipitation: Underneath mechanisms. Environ Sci Technol 52:7884–7891CrossRefGoogle Scholar
  4. 4.
    Yanallah K, Pontiga F, Fernandez RA (2009) Experimental investigation and numerical modelling of positive corona discharge: ozone generation. J Phys D Appl Phys 42:065202CrossRefGoogle Scholar
  5. 5.
    Kim HH (2004) Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Process Polym 1:91–110CrossRefGoogle Scholar
  6. 6.
    Liu D, Sun B, Iza F, Xu D, Wang X, Rong M, Kong M (2017) Main species and chemical pathways in cold atmospheric-pressure Ar + H2O plasmas. Plasma Sources Sci Technol 26:045009CrossRefGoogle Scholar
  7. 7.
    Wang T, Qu G, Ren J, Yan Q, Sun Q, Liang D, Hu S (2016) Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma. Water Res 89:28–38CrossRefGoogle Scholar
  8. 8.
    Jiang N, Lu N, Shang K, Li J, Wu Y (2013) Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas. Environ Sci Technol 47:9898–9903CrossRefGoogle Scholar
  9. 9.
    Thevenet F, Sivachandiran L, Guaitella O, Barakat C, Rousseau A (2014) Plasma-catalyst coupling for volatile organic compound removal and indoor air treatment: a review. J Phys D Appl Phys 47:224011CrossRefGoogle Scholar
  10. 10.
    Jiang N, Lu N, Shang K, Li J, Wu Y (2013) Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation. J Hazard Mater 265:387–393CrossRefGoogle Scholar
  11. 11.
    Malik MA, Minamitani Y, Schoenbach KH (2005) Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasma catalytic reactor. IEEE Trans Plasma Sci 33:50–56CrossRefGoogle Scholar
  12. 12.
    Malik MA, Schoenbach KH, Heller R (2014) Coupled surface dielectric barrier discharge reactor-ozone synthesis and nitric oxide conversion from air. Chem Eng J 256:222–229CrossRefGoogle Scholar
  13. 13.
    Assadi AA, Bouzaza A, Wolbert D (2016) Comparative study between laboratory and large pilot scales for VOC’s removal from gas streams in continuous flow surface discharge plasma. Chem Eng Res Des 106:308–314CrossRefGoogle Scholar
  14. 14.
    Song H, Li Y, Zhang Q, Jia M, Wu Y (2011) Experimental investigation of the characteristics of sliding discharge plasma aerodynamic actuation. Plasma Sci Technol 13:608CrossRefGoogle Scholar
  15. 15.
    Song H, Li Y, Zhang Q, Jia M, Wu Y (2012) Plasma sheet actuator driven by repetitive nanosecond pulses with a negative DC component. Plasma Sci Technol 14:327CrossRefGoogle Scholar
  16. 16.
    Bayoda KD, Benard N, Moreau E (2015) Nanosecond pulsed sliding dielectric barrier discharge plasma actuator for airflow control: electrical, optical, and mechanical characteristics. J Appl Phys 118:063301CrossRefGoogle Scholar
  17. 17.
    Jiang N, Guo L, Shang K, Lu N, Li J, Wu Y (2017) Discharge and optical characterizations of nanosecond pulse sliding dielectric barrier discharge plasma for volatile organic compound degradation. J Phys D Appl Phys 50:155206CrossRefGoogle Scholar
  18. 18.
    Yang DZ, Wang WC, Zhang S, Liu ZJ, Jia L, Dai LY (2013) Atmospheric air homogenous DBD plasma excited by bipolar nanosecond pulse used for improving the hydrophilic property of polypropylene. EPL 112:518–527Google Scholar
  19. 19.
    Laux CO, Spence TG, Kruger CH, Zare RN (2003) Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci Technol 12:125–138CrossRefGoogle Scholar
  20. 20.
    Jiang N, Guo L, Qiu C, Zhang Y, Shang K, Lu N, Li J, Wu Y (2018) Reactive species distribution characteristics and toluene destruction in the three-electrode DBD reactor energized by different pulsed modes. Chem Eng J 350:12–19CrossRefGoogle Scholar
  21. 21.
    Jiang N, Hu J, Li J, Shang K, Lu N, Wu Y (2016) Plasma-catalytic degradation of benzene over Ag–Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Appl Catal B 184:355–363CrossRefGoogle Scholar
  22. 22.
    Bibinov NK, Fateev AA, Wiesemann K (2001) On the influence of metastable reactions on rotational temperatures in dielectric barrier discharges in He-N2 mixtures. J Phys D Appl Phys 34:1819CrossRefGoogle Scholar
  23. 23.
    Wang D, Zhao D, Feng K, Zhang X, Liu D, Yang S (2011) The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications. Appl Phys Lett 98:161501CrossRefGoogle Scholar
  24. 24.
    Atkinson R, Aschmann SM, Arey J, Carter WPL (1989) Formation of ring-retaining products from the OH radical-initiated reactions of benzene and toluene. Int J Chem Kinet 21:801–827CrossRefGoogle Scholar
  25. 25.
    Herron JT (1999) Modeling studies of the formation and destruction of NO in pulsed barrier discharges in nitrogen and air. J Phys Chem Ref Data 28:1453–1482CrossRefGoogle Scholar
  26. 26.
    Wang S, Yang D, Wang W, Zhang S, Liu Z, Tang K, Song Y (2013) An atmospheric air gas-liquid diffuse discharge excited by bipolar nanosecond pulse in quartz container used for water sterilization. Appl Phys Lett 103:264108CrossRefGoogle Scholar
  27. 27.
    Magureanu M, Mandache NB, Parvulescu VI, Subrahmanyam C, Renken A, Kiwi-Minsker L (2007) Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Appl Catal B 74:270–277CrossRefGoogle Scholar
  28. 28.
    Mei D, Tu X (2017) Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: effects of plasma processing parameters and reactor design. J CO2 Util 19:68–78CrossRefGoogle Scholar
  29. 29.
    Tu X, Verheyde B, Corthals S, Paulussen S, Sels BF (2011) Effect of packing solid material on characteristics of helium dielectric barrier discharge at atmospheric pressure. Phys Plasmas 18:080702CrossRefGoogle Scholar
  30. 30.
    Meiners A, Leck M, Abel B (2010) Efficiency enhancement of a dielectric barrier plasma discharge by dielectric barrier optimization. Rev Sci Instrum 81:113507CrossRefGoogle Scholar
  31. 31.
    Einaga H, Teraoka Y, Ogata A (2013) Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite. J Catal 305:227–237CrossRefGoogle Scholar
  32. 32.
    Einaga H, Maeda N, Teraoka Y (2013) Effect of catalyst composition and preparation conditions on catalytic properties of unsupported manganese oxides for benzene oxidation with ozone. Appl Catal B 142–143:406–413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nan Jiang
    • 1
    • 2
  • Cheng Qiu
    • 1
    • 3
  • Lianjie Guo
    • 1
    • 3
  • Kefeng Shang
    • 1
  • Na Lu
    • 1
  • Jie Li
    • 1
  • Yan Wu
    • 1
  1. 1.Institute of Electrostatics and Special PowerDalian University of Technology, School of Electrical EngineeringDalianChina
  2. 2.State Key Laboratory of Electrical Insulation and Power EquipmentXi’an Jiaotong UniversityXi’anChina
  3. 3.Key Laboratory of Industrial Ecology and Environmental EngineeringMinistry of Education of the People’s Republic of ChinaDalianChina

Personalised recommendations