Advertisement

Plasma Chemistry and Plasma Processing

, Volume 39, Issue 1, pp 259–276 | Cite as

An Experimental Investigation of Cathode Spot Motion in a Magnetically Rotating Arc Plasma Generator at Atmospheric Pressure

  • Cheng Wang
  • Jianqiao Li
  • Zelong Zhang
  • Lei Ye
  • Weiluo Xia
  • Weidong Xia
Original Paper
  • 55 Downloads

Abstract

Cathode spots present complex forms in magnetically rotating arc plasma generators due to the coupling effect of the plasma flow and electromagnetic fields. In this paper, a magnetically rotating arc plasma generator is built to study cathode spot motion at atmospheric pressure. Cathode spot configuration is observed and discussed for different magnetic fields, arc currents, gas flow rates and cathode lengths. Results show that cathode spots with a slow rotation speed (less than 1 Hz) and different rotation directions occur on the cathode end. For a low magnetic field, low arc current, high gas flow, short cathode rod, the rotation direction of the cathode spot is consistent with the arc column rotation. With an increase in the magnetic field, increase in the arc current, decrease in gas flow, or increase in the cathode rod length, the rotation speed declines, and the cathode spot can move in a reversed direction (i.e., against the arc column rotation). The cathode spot area also appears to expand gradually when the spot motion shifts from the normal direction to the reversed direction, resulting in less cathode erosion at the reversed motion. Further analysis indicates that the cathode spot motion is similar to the retrograde movement that occurs in a vacuum arc with an external magnetic field. The rotation of cathode spot may thus be induced by the radial component of the magnetic field. The cathode spot area that affects the self-magnetic field in the cathode spot is potentially a direct determinant of spot motion.

Keywords

Cathode spot motion Magnetically rotating arc plasma Graphite cathode Rotation of cathode spot Reversed movement 

Notes

Acknowledgements

The work is supported by National Natural Science Foundation of China (No. 11705202) and Anhui Provincial Natural Science Foundation (No. 1808085MA12).

References

  1. 1.
    Fauchais P, Vardelle A (1997) Thermal plasmas. IEEE Trans Plasma Sci 25:1258–1280CrossRefGoogle Scholar
  2. 2.
    Pfender E (1999) Thermal plasma technology: where do we stand and where are we going? Plasma Chem Plasma Process 19:1–31CrossRefGoogle Scholar
  3. 3.
    Slinkman D, Sacks R (1990) Structure and dynamics of a magnetron DC arc plasma. Appl Spectrosc 44:76–83CrossRefGoogle Scholar
  4. 4.
    Xia WD, Li LC, Zhao YH, Ma Q, Du BH, Chen Q, Cheng L (2006) Dynamics of large-scale magnetically rotating arc plasmas. Appl Phys Lett 88:211501CrossRefGoogle Scholar
  5. 5.
    Wang C, Li WW, Zhang XN, Zha J, Xia WD (2015) Evolution of magnetically rotating arc into large area arc plasma. Chin Phys B 24:065206CrossRefGoogle Scholar
  6. 6.
    Szente RN, Munz RJ, Drouet MG (1987) The effect of low concentrations of a polyatomic-gas in argon on erosion on copper cathodes in a magnetically rotated arc. Plasma Chem Plasma Process 7:349–364CrossRefGoogle Scholar
  7. 7.
    Szente RN, Munz RJ, Drouet MG (1987) Effect of the arc velocity on the cathode erosion rate in argon nitrogen mixtures. J Phys D Appl Phys 20:754–756CrossRefGoogle Scholar
  8. 8.
    Szente RN, Munz RJ, Drouet MG (1988) arc velocity and cathode erosion rate in a magnetically driven arc burning in nitrogen. J Phys D Appl Phys 21:909–913CrossRefGoogle Scholar
  9. 9.
    Pan WX, Lu FX, Tang WZ, Zhong GF, Jiang Z, Wu CK (2000) Carbon transition efficiency and process cost in high-rate, large-area deposition of diamond films by DC arc plasma jet. Diam Relat Mater 9:1682–1686CrossRefGoogle Scholar
  10. 10.
    Lu FX, Tang WZ, Huang TB, Liu JM, Song JH, Yu WX, Tong YM (2001) Large area high quality diamond film deposition by high power DC arc plasma jet operating at gas recycling mode. Diam Relat Mater 10:1551–1558CrossRefGoogle Scholar
  11. 11.
    Ma J, Zhang M, Wu J, Yang Q, Wen G, Su B, Ren Q (2017) Hydropyrolysis of n-hexane and toluene to acetylene in rotating-arc plasma. Energies 10:899CrossRefGoogle Scholar
  12. 12.
    Zhang M, Xue W, Su B, Bao Z, Wen G, Xing H, Ren Q (2017) Conversion of glycerol into syngas by rotating DC arc plasma. Energy 123:1–8CrossRefGoogle Scholar
  13. 13.
    Slinkman D, Sacks R (1990) A magnetron DC arc plasma for aerosol analysis. Appl Spectrosc 44:83–90CrossRefGoogle Scholar
  14. 14.
    Mihovsky MK, Hadzhiyski V (2009) Transport and heat phenomena of transferred DC arc under auto-electro-magnetic rotation (AEMR) in plasmalab reactor. High Temp Mater Process (New York) 13:121–135CrossRefGoogle Scholar
  15. 15.
    Hadzhiyski V, Mihovsky M, Gavrilova R (2011) Plasma-arc reactor for production possibility of powdered nano-size materials. J Phys Conf Ser 275:012005CrossRefGoogle Scholar
  16. 16.
    Carter RP, Murphree DL (1969) Low-pressure arc discharge motion between concentric cylindrical electrodes in a transverse magnetic field. AIAA J 7:1430CrossRefGoogle Scholar
  17. 17.
    Hernqvist KG, Johnson EO (1955) Retrograde motion in gas discharge plasmas. Phys Rev 98:1576–1583CrossRefGoogle Scholar
  18. 18.
    Murphree DL, Carter RP (1970) Photographic observations of the retrograde rotation of an arc discharge. Phys Fluids 13:1747–1750CrossRefGoogle Scholar
  19. 19.
    Drouet MG (1981) The physics of the retrograde motion of the electric arc. IEEE Trans Plasma Sci 13:235–241CrossRefGoogle Scholar
  20. 20.
    Drouet M, Meunier JL (1985) Influence of the background gas pressure on the expansion of the arc-cathode plasma. IEEE Trans Plasma Sci 13:285–287CrossRefGoogle Scholar
  21. 21.
    Schrade HO (1989) Arc cathode spots: their mechanism and motion. IEEE Trans Plasma Sci 17:635–637CrossRefGoogle Scholar
  22. 22.
    Moizhes BY, Nemchinsky V (1991) On the theory of the retrograde motion of a vacuum arc. J Phys D Appl Phys 24:2014CrossRefGoogle Scholar
  23. 23.
    Juttner B (2001) Cathode spots of electric arcs. J Phys D Appl Phys 34:R103CrossRefGoogle Scholar
  24. 24.
    Juttner B, Kleberg I (2000) The retrograde motion of arc cathode spots in vacuum. J Phys D Appl Phys 33:2025CrossRefGoogle Scholar
  25. 25.
    Beilis II (2002) Vacuum arc cathode spot grouping and motion in magnetic fields. IEEE Trans Plasma Sci 30:2124–2132CrossRefGoogle Scholar
  26. 26.
    Schrade HO (2002) Arc cathode spots: their mechanism and motion. IEEE Trans Plasma Sci 17:635–637CrossRefGoogle Scholar
  27. 27.
    Bobrov YK, Bystrov V, Rukhadze A (2006) Physical model of the cathode spot retrograde motion. Tech Phys 51:567–573CrossRefGoogle Scholar
  28. 28.
    Szente RN, Munz RJ, Drouet MG (1990) The influence of the cathode surface on the movement of magnetically driven electric-arcs. J Phys D Appl Phys 23:1193–1200CrossRefGoogle Scholar
  29. 29.
    Wang C, Cui HC, Zhang ZL, Xia WL, Xia WD (2017) Observation of arc modes in a magnetically rotating arc plasma generator. Contrib Plasma Phys 57:395–403CrossRefGoogle Scholar
  30. 30.
    Chen T, Wang C, Liao MR, Xia WD (2016) Diffuse and spot mode of cathode arc attachments in an atmospheric magnetically rotating argon arc. J Phys D Appl Phys 49:085202CrossRefGoogle Scholar
  31. 31.
    Chen T, Li H, Bai B, Liao MR, Xia WD (2016) Parametric study on arc behavior of magnetically diffused arc. Plasma Sci Technol 18:6–11CrossRefGoogle Scholar
  32. 32.
    Chen T, Wang C, Zhang XN, Zhang H, Xia WD (2017) Thermal and electrical influences from bulk plasma in cathode heating modeling. Plasma Sources Sci Technol 26:025002CrossRefGoogle Scholar
  33. 33.
    Bai B, Zha J, Zhang XM, Wang C, Xia WD (2012) Simulation of magnetically dispersed arc plasma. Plasma Sci Technol 14:118–121CrossRefGoogle Scholar
  34. 34.
    Wang C, Zha J, Li WW, Xia WL, Xia WD (2014) Experimental study of the thermal cathodic arc root in magnetically rotating arc plasma. High Volt Eng 40(10):3025–3031Google Scholar
  35. 35.
    Xia WD, Zhou HL, Zhou ZP, Bai B (2008) Evolution of cathodic arc roots in a large-scale magnetically rotating arc plasma. IEEE Trans Plasma Sci 36:1048–1049CrossRefGoogle Scholar
  36. 36.
    Wang C, Li WW, Zhang XN, Liao MR, Zha J, Xia WD (2015) Observation of thermal cathodic hot spots in a magnetically rotating arc plasma generator. IEEE Trans Plasma Sci 43:3716–3720CrossRefGoogle Scholar
  37. 37.
    Mihovsky MK, Hadzhiyski V, Todorov L (2007) Electromagnetic and gas dynamic control of transferred plasma ARC in metallurgical plasma reactors and furnaces. High Temp Mater Process (New York) 11:359–369CrossRefGoogle Scholar
  38. 38.
    Zhou HL, Li LC, Cheng L, Zhou ZP, Bai B, Xia WD (2008) ICCD imaging of coexisting arc roots and arc column in a large-area dispersed arc-plasma source. IEEE Trans Plasma Sci 36:1084–1085CrossRefGoogle Scholar
  39. 39.
    Dabringhausen L, Nandelstadt D, Luhmann J, Mentel J (2002) Determination of HID electrode falls in a model lamp I: pyrometric measurements. J Phys D Appl Phys 35:1621–1630CrossRefGoogle Scholar
  40. 40.
    Lichtenberg S, Nandelstadt D, Dabringhausen L, Redwitz M, Luhmann J, Mentel J (2002) Observation of different modes of cathodic arc attachment to HID electrodes in a model lamp. J Phys D Appl Phys 35:1648–1656CrossRefGoogle Scholar
  41. 41.
    Haidar J, Farmer A (1993) A method for the measurement of the cathode surface temperature for a high-current free-burning arc. Rev Sci Instrum 64:542–547CrossRefGoogle Scholar
  42. 42.
    Haidar J (1996) An experimental investigation of high-current arcs in argon with graphite electrodes. Plasma Sources Sci Technol 5:748–753CrossRefGoogle Scholar
  43. 43.
    Seon H, Munz RJ (2001) Study of arc stability and erosion behaviour of a transferred arc with graphite DC electrodes. Can J Chem Eng 79:626–632CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cheng Wang
    • 1
  • Jianqiao Li
    • 1
  • Zelong Zhang
    • 1
  • Lei Ye
    • 1
  • Weiluo Xia
    • 2
  • Weidong Xia
    • 1
  1. 1.Department of Thermal Science and Energy EngineeringUniversity of Science and TechnologyHefeiChina
  2. 2.Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina

Personalised recommendations