Plasma Chemistry and Plasma Processing

, Volume 39, Issue 1, pp 293–309 | Cite as

A Plasma-Initiated Graft Polymerization of Methyl Methacrylate in the Presence of a Reverse ATRP Catalyst

  • Zheng Shen
  • Jie Huang
  • Yichen Xia
  • Meng Zhu
  • Jian HuangEmail author
  • Xiaolin Wang
Original Paper


A plasma-initiated graft polymerization of methyl methacrylate (MMA) was carried out on the high-density polyethylene (HDPE) surface in the presence of the reverse atom transfer radical polymerization (RATRP) catalyst of CuCl2/2,2′-bipyridine (bpy). The polymerization kinetics presented a linear relation with polymerization time. A well-defined PMMA brush was fabricated on the surface, evidenced by the linear growth of molecular weights with conversions and narrow polymer dispersity (Ð = 1.31). Graft amounts were indicated to increase proportionally with the increase of conversions and molecular weights. Subsequently, a solvent-responsive surface was prepared by the block copolymerization of 2-hydroxyethyl methacrylate (HEMA) on the PMMA grafted surface. The polymerization is suggested to proceed via a RATRP mechanism, when plasma radicals could behave similarly as conventional radicals in forming dormant species.


Plasma-initiated polymerization Reverse atom transfer radical polymerization Graft polymerization Methyl methacrylate Surface modification 



The work was supported by National Basic Research Program of China (2009CB623404), National Natural Science Foundation of China (20776068) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    Long SJ, Wan F, Yang W, Guo H, He XY, Ren J, Gao JZ (2013) Fabrication and characterization of tunable wettability surface on copper substrate by poly(ionic liquid) modification via surface-initiated nitroxide-mediated radical polymerization. J Appl Polym Sci 128:2687–2693CrossRefGoogle Scholar
  2. 2.
    Contreras-Lpóez D, Albores-Velasco M, Saldĺvar-Guerra E (2017) Isoprene (co)polymers with glycidyl methacrylate via bimolecular and unimolecular nitroxide mediated radical polymerization. J Appl Polym Sci 134:45108CrossRefGoogle Scholar
  3. 3.
    Takada K, Matsumoto A (2017) Reversible addition-fragmentation chain transfer polymerization of diisopropyl fumarate using various dithiobenzoates as chain transfer agents. J Polym Sci Part A Polym Chem 55:3266–3275CrossRefGoogle Scholar
  4. 4.
    Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2018) Synthesis of dual thermo- and pH-sensitive poly(-isopropylacrylamideco-acrylic acid)-grafted cellulose nanocrystals by reversible addition-fragmentation chain transfer polymerization. J Biomed Mater Res 106:231–243CrossRefGoogle Scholar
  5. 5.
    Wang JS, Matyjaszewski K (1995) Controlled/”living” radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 28:7901–7910CrossRefGoogle Scholar
  6. 6.
    Yang DY, Wang J, Han J, Khan MY, Xie XL, Xue ZG (2017) Initiator-free atom transfer radical polymerization of methyl methacrylate based on FeBr 3(PPh3)n system. J Polym Sci Part A Polym Chem 55:3842–3850CrossRefGoogle Scholar
  7. 7.
    Matyjaszewski K, Patten TE, Xia JH (1997) Controlled/“living” radical polymerization. kinetics of the homogeneous atom transfer radical polymerization of styrene. J Am Chem Soc 119:674–680CrossRefGoogle Scholar
  8. 8.
    Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1:276–288CrossRefGoogle Scholar
  9. 9.
    Calafel I, Muñoz ME, Santamarĺa A, Boix M, Conde JL, Pascual B (2015) The effect of crystallites on the rheological properties of microphase-separated PVC-PBA-PVC triblock copolymers obtained by single electron transfer-degenerative chain transfer living radical polymerization. J Vinyl Addit Technol 21:24–32CrossRefGoogle Scholar
  10. 10.
    Xu WJ, Zhang WS, Li W, Yan JL, Shen GY, Li J (2012) Synthesis of poly(vinyl acetate) by degenerative transfer polymerization in the presence of iodine. J Appl Polym Sci 126:104–109CrossRefGoogle Scholar
  11. 11.
    Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990CrossRefGoogle Scholar
  12. 12.
    Krys P, Schroeder H, Buback J, Buback M, Matyjaszewski K (2016) The borderline between simultaneous reverse and normal initiation and initiators for continuous activator regeneration ATRP. Macromolecules 49:7793–7803CrossRefGoogle Scholar
  13. 13.
    Chen GJ, Zhu XL, Zhu J, Cheng ZP (2004) Plasma-initiated controlled/living radical polymerization of methyl methacrylate in the presence of 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN). Macromol Rapid Commun 25:818–824CrossRefGoogle Scholar
  14. 14.
    Zhang ZB, Zhu XL, Zhu J, Cheng ZP (2006) Reversible addition fragmentation chain transfer (RAFT) emulsion polymerization of methyl methacrylate via a plasma-initiated process. Polym Bull 56:539–548CrossRefGoogle Scholar
  15. 15.
    You YZ, Hong CY, Bai RK, Pan CY, Wang J (2002) Photo-initiated living free radical polymerization in the presence of dibenzyl trithiocarbonate. Macromol Chem Phys 203:477–483CrossRefGoogle Scholar
  16. 16.
    Cho M, Chung H, Yoon J (2003) A disinfection of water containing natural organic matter by using ozone-initiated radical reactions. Appl Environ Microbiol 69:2284–2291CrossRefGoogle Scholar
  17. 17.
    Johnson DR, Osada Y, Bell AT, Shen M (1981) Studies of the mechanism and kinetics of plasma-initiated polymerization of methyl methacrylate. Macromolecules 14:118–124CrossRefGoogle Scholar
  18. 18.
    Wang MY, Wang SG, Zhang WB, Xu KW (2012) Low temperature plasma-initiated copolymerization of acrylamide and sodium acrylate. Adv Mater Res 391–392:1164–1167Google Scholar
  19. 19.
    Simionescu CI, Simionescu BC (1992) The mechanism of plasma-induced polymerization. Makromol Chem Macromol Symp 54(55):595–598CrossRefGoogle Scholar
  20. 20.
    Yan D, Yuan XB, Ma GQ, Sheng J (2009) Low temperature plasma-initiated copolymerization of styrene and maleicanhydride. J Vac Sci Technol B 27:1450–1453CrossRefGoogle Scholar
  21. 21.
    Osada Y, Mizumoto A (1985) Spontaneous and rapid polymerization of plasma-exposed monomer crystals in the liquid phase. Macromolecules 18:302–304CrossRefGoogle Scholar
  22. 22.
    Osada Y, Takase M, Iriyama Y (1983) Effects and role of the solvents on the plasma-initiated solution polymerization of vinyl monomers. Polym J 15:81–86CrossRefGoogle Scholar
  23. 23.
    Saikia PJ, Hazarika AK, Baruah SD (2013) Iron(III)-mediated ATRP systems of n-docosyl acrylate with AIBN and BPO. Polym Bull 70:1483–1498CrossRefGoogle Scholar
  24. 24.
    Shi SJ, Zhou Y, Lu X, Ye YS, Huang J, Wang XL (2014) Plasma-initiated DT graft polymerization of acrylic acid on surface of porous polypropylene membrane for pore size control. Plasma Chem Plasma Process 34:1257–1269CrossRefGoogle Scholar
  25. 25.
    Atsushi G, Takeshi F (2004) Kinetics of living radical polymerization. Prog Polym Sci 29:329–385CrossRefGoogle Scholar
  26. 26.
    Yan XJ, Li JW, Yi LM (2017) Fabrication of pH-responsive hydrophilic/hydrophobic Janus cotton fabric via plasma-induced graft polymerization. Mater Lett 208:46–49CrossRefGoogle Scholar
  27. 27.
    Ma Q, Zhang H, Zhao J, Gong YK (2012) Fabrication of cell outer membrane mimetic polymer brush on polysulfone surface via RAFT technique. Appl Surf Sci 258:9711–9717CrossRefGoogle Scholar
  28. 28.
    Han Y, Song SJ, Lua Y, Zhu DF (2016) A method to modify PVDF microfiltration membrane via ATRP with low-temperature plasma pretreatment. Appl Surf Sci 379:474–479CrossRefGoogle Scholar
  29. 29.
    Keating J IV, Sorci M, Kocsis I, Setaroa A et al (2018) Atmospheric pressure plasma—ARGET ATRP modification of poly(ether sulfone) membranes: a combination attack. J Membr Sci 546:151–157CrossRefGoogle Scholar
  30. 30.
    Lanzalaco S, Fantin M, Galia A, Isse AA, Gennaro A, Matyjaszewski K (2017) Atom transfer radical polymerization with different halides (F, Cl, Br, and I): is the process “living” in the presence of fluorinated initiators? Macromolecules 50:192–202CrossRefGoogle Scholar
  31. 31.
    Wahidur Rahaman SM, Matyjaszewski K, Poli R (2016) Cobalt(III) and copper(II) hydrides at the crossroad of catalysed chain transfer and catalysed radical termination: a DFT study. Polym Chem 7:1079–1087CrossRefGoogle Scholar
  32. 32.
    Qian YJ, Chi LN, Zhou WL, Yu ZJ, Zhang ZZ, Zhang ZJ, Jiang Z (2016) Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment. Appl Surf Sci 360:749–757CrossRefGoogle Scholar
  33. 33.
    Teng R, Yasuda HK (2002) Ex situ chemical determination of free radicals and peroxides on plasma treated surfaces. Plasma Polym 7:57–69CrossRefGoogle Scholar
  34. 34.
    Odian G (2004) Principles of polymerization, 4th edn. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  35. 35.
    Hutchinson RA, Aronson MT, Richards JR (1993) Analysis of pulsed-laser-generated molecular weight distributions for the determination of propagation rate coefficients. Macromolecules 26:6410–6415CrossRefGoogle Scholar
  36. 36.
    Feng HK, Dan Y (2006) The research of RATRP of styrene in the microemulsion. J Appl Polym Sci 99:1093–1099CrossRefGoogle Scholar
  37. 37.
    Chiaki Y, Atsushi G, Yoshinobu T, Takeshi F, Kazuya Y, Akio K (2005) Fabrication of high-density polymer brush on polymer substrate by surface-initiated living radical polymerization. Macromolecules 38:4604–4610CrossRefGoogle Scholar
  38. 38.
    Muhammad E, Shinpei Y, Kohji O, Yoshinobu T, Takeshi F (1998) Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the Langmuir–Blodgett and atom transfer radical polymerization techniques. Macromolecules 31:5934–5936CrossRefGoogle Scholar
  39. 39.
    Brinkhuis RHG, Schouten AJ (1991) Thin-film behavior of poly(methy1 methacrylates). 2. An FT-IR study of Langmuir–Blodgett films of isotactic PMMA. Macromolecules 24:1496–1504CrossRefGoogle Scholar
  40. 40.
    Beamson G, Briggs D (1992) High resolution XPS of organic polymers: the Scienta ESCA300 database. Wiley, ChichesterGoogle Scholar
  41. 41.
    Ma Y, Cao XY, Feng XJ, Ma YM, Zou H (2007) Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90°. Polymer 48:7455–7460CrossRefGoogle Scholar
  42. 42.
    Cerda J, Vicente M, Gutierrez JM et al (1989) A new methodology for the optimal design and production schedule of multipurpose batch plants. Ind Eng Chem Res 28:988–998CrossRefGoogle Scholar
  43. 43.
    Wang G, Zhu X, Cheng Z, Zhu J (2006) New ligands for the Fe(III)-mediated reverse atom transfer radical polymerization of methyl methacrylate. J Polym Sci Part A Polym Chem 44:2912–2921CrossRefGoogle Scholar
  44. 44.
    Worthley CH, Constantopoulos KT, Ginic-Markovic M et al (2011) Surface modification of commercial cellulose acetate membranes using surface-initiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface biofouling resistance. J Membr Sci 385:30–39CrossRefGoogle Scholar
  45. 45.
    Yang MQ, Mao J, Nie W et al (2012) Facile synthesis and responsive behavior of PDMS-b-PEG diblock copolymer brushes via photoinitiated “thiol-ene” click reaction. J Polym Sci Part A Polym Chem 50:2075–2083CrossRefGoogle Scholar
  46. 46.
    Howarter JA, Youngblood JP (2007) Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes. Adv Mater 19:3838–3843CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zheng Shen
    • 1
  • Jie Huang
    • 1
  • Yichen Xia
    • 1
  • Meng Zhu
    • 1
  • Jian Huang
    • 1
    Email author
  • Xiaolin Wang
    • 2
  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Department of Chemical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations