Advertisement

Plasma Chemistry and Plasma Processing

, Volume 38, Issue 6, pp 1273–1291 | Cite as

Cleaning Away the Oleic Acid Contaminant from Glass Surface by Negative Glow Plasma

  • Florentina Samoila
  • Valentin Pohoata
  • Lucel Sirghi
Original Paper
  • 74 Downloads

Abstract

Glass surfaces are contaminated by exposure to overheated oleic acid vapor and then cleaned by low-pressure plasma of a dc glow discharge in either air or argon. In this study, the oleic acid is used as model for hydrophobic organic contaminant and glass as a model for inorganic hydrophilic substrate. The processes of contamination and plasma cleaning are studied by atomic force microscopy (AFM), which revealed formation of oleic acid nanodroplets during contamination and, then, their removal during a few minutes of plasma cleaning. Water contact angle measurements show a much faster effect of plasma cleaning treatment, the contaminated surface changing from slightly hydrophobic to superhydrophilic in less than 30 s. This effect can be attributed to oxidation and hydroxylation of the oleic acid, as indicated by infrared absorption measurements. Also, the AFM indentation of the oleic acid nanodroplets after short plasma treatment indicates solidification of the remnant contaminant material.

Keywords

Atomic force microscopy Glass substrate Oil contaminant Plasma cleaning Negative glow 

References

  1. 1.
    Roth JR (2001) Industrial plasma engineering: applications to nonthermal plasma processing, vol 2. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Morent R, De Geyter N, Desmet T, Dubruel P, Leys C (2011) Plasma surface modification of biodegradable polymers: a review. Plasma Process Polym 8(3):171–190CrossRefGoogle Scholar
  3. 3.
    Von Keudell A, Awakowicz P, Benedikt J, Raballand V, Yanguas-Gil A, Opretzka J, Flotgen C, Reuter Byelykh L, Halfmann H, Stapelmann K, Denis B, Wunderlich J, Muranyi P, Rossi F, Kylian O, Hasiwa N, Ruiz A, Rauscher H, Sirghi L, Comoy E, Dehen C, Challier L, Deslys JP (2010) Inactivation of bacteria and biomolecules by low-pressure plasma discharges. Plasma Process Polym 7(3–4):327–352CrossRefGoogle Scholar
  4. 4.
    Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing. Wiley, New YorkCrossRefGoogle Scholar
  5. 5.
    Terpilowski K, Rymuszka D (2016) Surface properties of glass plates activated by air, oxygen, nitrogen and argon plasma. Glass Phys Chem 42(6):535–541CrossRefGoogle Scholar
  6. 6.
    Sieck LW, Heron JT, Green DS (2000) Chemical kinetics database and predictive schemes for humid air plasma chemistry. Part I: positive ion–molecule reactions. Plasma Chem Plasma Process 20(2):235–258CrossRefGoogle Scholar
  7. 7.
    Herron JT, Green DS (2001) Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions. Plasma Chem Plasma Process 21(3):459–481CrossRefGoogle Scholar
  8. 8.
    Múgica-Vidal R, Alba-Elías F, Sainz-García E, Pantoja-Ruiz M (2017) Atmospheric pressure air plasma treatment of glass substrates for improved silver/glass adhesion in solar mirrors. Sol Energy Mater Sol Cells 169:287–296CrossRefGoogle Scholar
  9. 9.
    Sirghi L (2011) Plasma cleaning of silicon surface of atomic force microscopy probes. Rom J Phys 56:144Google Scholar
  10. 10.
    Chirtsov AS, Mikushev VM, Lebedeva EV, Sychov SV (2016) Numerical simulation of glow discharge in air mixtures under low pressure conditions. Int J Appl Eng Res 11(24):11836–11846Google Scholar
  11. 11.
    Ratliff PH, Harrison WW (1994) The effects of water vapor in glow discharge mass spectrometry. Spectrochim Acta 49B(12–14):1747–1757CrossRefGoogle Scholar
  12. 12.
    Van Deynse A, De Geyter N, Leys C, Morent R (2014) Influence of water vapor addition on the surface modification of polyethylene in an argon dielectric barrier discharge. Plasma Process Polym 11(2):117–125CrossRefGoogle Scholar
  13. 13.
    Oh C, Streller F, Ashurst WR, Carpick RW, de Boer MP (2016) In situ oxygen plasma cleaning of microswitch surfaces-comparison of Ti and graphite electrodes. J Micromech Microeng 26(11):115020CrossRefGoogle Scholar
  14. 14.
    Gorodetskiy AE, Zalavutdinov RK, Bukhovets VL, Zakharov AP (2012) Oxidation of hydrocarbon films and metal materials in oxygen containing low temperature plasma. Prot Met Phys Chem Surf 48(7):790–795CrossRefGoogle Scholar
  15. 15.
    Sun T, Blanchard P-Y, Mirkin MV (2015) Cleaning nanoelectrodes with air plasma. Anal Chem 87:4092–4095CrossRefGoogle Scholar
  16. 16.
    Poudyal N, Han G, Qiu Z, Elkins K, Mohapatra J, Gandha K, Timmon RB, Liu JP (2017) Cleaning of magnetic nanoparticle surfaces via cold plasmas treatments. AIP Adv 7(5):056233CrossRefGoogle Scholar
  17. 17.
    Li H, Belkind A, Jansen F, Orban Z (1997) An in situ XPS study of oxygen plasma cleaning of aluminum surfaces. Surf Coat Technol 92(3):171–177CrossRefGoogle Scholar
  18. 18.
    Krüger P, Knes R, Friedrich J (1999) Surface cleaning by plasma-enhanced desorption of contaminants (PEDC). Surf Coat Technol 112(1–3):240–244CrossRefGoogle Scholar
  19. 19.
    Hammer MU, Forbrig E, Kupsch S, Weltmann KD, Reuter S (2013) Influence of plasma treatment on the structure and function of lipids. Plasma Med 3(1–2):97–117Google Scholar
  20. 20.
    Bahrami N, Bayliss D, Chope G, Penson S, Perehinec T, Fisk ID (2016) Cold plasma: a new technology to modify wheat flour functionality. Food Chem 202:247–253CrossRefGoogle Scholar
  21. 21.
    Katz J, Gershman S, Belkind A (2015) Optical emission spectroscopy and contact angle study of plasma cleaning of titanium alloy surfaces: argon plasma. Plasma Med 5(2–4):223–236CrossRefGoogle Scholar
  22. 22.
    Chekanov AS, Low TS, Alli S (1996) An AFM study of environmental contaminants and lubricant morphology on the magnetic hard-disk surface. IEEE Trans Magn 32(5):3726–3728CrossRefGoogle Scholar
  23. 23.
    Sirghi L, Kylian O, Gilliland D, Ceccone G, Rossi F (2006) Cleaning and hydrophilization of atomic force microscopy silicon probes. J Phys Chem B 110(51):25975–25981CrossRefGoogle Scholar
  24. 24.
    Apetrei A, Sirghi L (2012) Transport mechanisms in capillary condensation of water at a single-asperity nanoscopic contact. Langmuir 28(5):2558–2566CrossRefGoogle Scholar
  25. 25.
    Samoila F, Sirghi L (2017) Disjoining pressure in partial wetting on the nanoscale. Langmuir 33(21):5188–5196CrossRefGoogle Scholar
  26. 26.
    Samoila F, Besleaga A, Sirghi L (2016) In: Jabloski R, Szewczyk R (eds) Recent global research and education: technological challenges: proceedings of the 15th international conference on global research and education inter-academia. Springer, Berlin, p 71Google Scholar
  27. 27.
    Lisovskiy VA, Yakovin SD (2000) Experimental study of a low-pressure glow discharge in air in large-diameter discharge tubes: I. Conditions for the normal regime of a glow discharge. Plasma Phys Rep 26(12):1066–1075CrossRefGoogle Scholar
  28. 28.
    Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64(7):1868–1873CrossRefGoogle Scholar
  29. 29.
    Bayram SB, Freamat MV (2012) Vibrational spectra of N2: an advanced undergraduate laboratory in atomic and molecular spectroscopy. Am J Phys 80(8):664–669CrossRefGoogle Scholar
  30. 30.
    Rahul R, Stan O, Rahman A, Littlefield E, Hoshimiya K, Yalin AP, Sharmal A, Pruden A, Moore CA, Yu Z, Collins GJ (2005) Optical and RF electrical characteristics of atmospheric pressure open-air hollow slot microplasmas and application to bacterial inactivation. J Phys D Appl Phys 38(11):1750CrossRefGoogle Scholar
  31. 31.
    Laux CO, Spence TG, Kruger CH, Zare RN (2003) Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci Technol 12(2):125CrossRefGoogle Scholar
  32. 32.
    Hershkowitz N (1989) In: Auciello O, Flamm DL (eds) Plasma diagnostics, vol 1. Academic Press Inc, San DiegoGoogle Scholar
  33. 33.
    Nah T, Kessler SH, Daumit KE, Kroll JH, Leone SR, Wilson KR (2013) OH-initiated oxidation of sub-micron unsaturated fatty acid particles. Phys Chem Chem Phys 15(42):18649–18663CrossRefGoogle Scholar
  34. 34.
    Giesbers M, Marcelis ATM, Zuilhof H (2013) Simulation of XPS C1s spectra of organic monolayers by quantum chemical methods. Langmuir 29:4782–4788CrossRefGoogle Scholar
  35. 35.
    Voss LF, Bazerbashi MF, Beekman CP, Hadad CM, Allen HC (2007) Oxidation of oleic acid at air/liquid interfaces. J Geophys Res Atmos 112(D6):D06209CrossRefGoogle Scholar
  36. 36.
    Zhang X, Barraza KM, Upton KT, Beauchamp JL (2017) Time resolved study of hydroxyl radical oxidation of oleic acid at the air–water interface. Chem Phys Lett 683:76–82CrossRefGoogle Scholar
  37. 37.
    Sirghi L, Szoszkiewicz R, Riedo E (2006) Volume of a nanoscale water bridge. Langmuir 22(3):1093–1098CrossRefGoogle Scholar
  38. 38.
    Sirghi L, Ruiz A, Colpo P, Rossi F (2009) Atomic force microscopy indentation of fluorocarbon thin films fabricated by plasma enhanced chemical deposition at low radio frequency power. Thin Solid Films 517(11):3310–3314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Florentina Samoila
    • 1
  • Valentin Pohoata
    • 1
  • Lucel Sirghi
    • 1
  1. 1.Faculty of Physics, Iasi Plasma Advanced Research Center (IPARC)Alexandru Ioan Cuza University of IasiIasiRomania

Personalised recommendations