Advertisement

Plasma Chemistry and Plasma Processing

, Volume 39, Issue 1, pp 89–108 | Cite as

The Role of Atomic Oxygen and Ozone in the Plasma and Post-plasma Catalytic Removal of N2O

  • Mohammad Zangouei
  • Brian S. HaynesEmail author
Original Paper
  • 108 Downloads

Abstract

The destruction of nitrous oxide in oxygen using plasma and post-plasma catalytic treatments was investigated experimentally in atmospheric-pressure dielectric barrier (DBD) and gliding arc (GAD) discharges. In the DBD, ~ 7% of the N2O is destroyed with ~ 70% selectivity to NOx whereas the GAD gives rise to greater conversion (~ 23%) with lower NOx selectivity (~ 30%). A gas-phase plasma kinetic model was developed and used to analyse the chemical reaction pathways involved in the plasma environment: in the room temperature DBD, the primary destruction process is reaction with O(1D), with the branching ratio to form 2NO versus N2 + O2 determining the product selectivity. On the other hand, in the hot GAD environment (~ 900 K), the reaction of ground-state O with N2O to form N2 + O2 becomes more important. The use of a catalytic bed after the DBD reactor resulted in significant enhancement of N2O conversion from 6.8 to 28.0%. A surface mechanism for the catalytic dissociation of N2O in the presence of O3 is proposed, whereby N2O reacts with the adsorbed atomic oxygen, released from ozone dissociation, to form N2 and NO in approximately equal proportions.

Keywords

N2O destruction Plasma modeling Dielectric barrier discharge Gliding arc discharge Catalytic reaction mechanism Ozone 

Notes

Acknowledgements

The authors thank Dr. Sisi Zheng from School of Chemical and Biomoelcular Engineering at the University of Sydney for her assistance during experiments.

References

  1. 1.
    Pérez-Ramirez J, Kapteijn F, Schöffel K, Moulijn JA (2003) Formation and control of N2O in nitric acid production Where do we stand today? Appl Catal B 44(2):117–151.  https://doi.org/10.1016/S0926-3373(03)00026-2 Google Scholar
  2. 2.
    Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov II, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: from global to regional. In: Stocker TF, Qin D, Plattner G-K et al. (eds) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.  https://doi.org/10.1017/cbo9781107415324.022
  3. 3.
  4. 4.
    Methane-and-Nitrous-Oxide-Emissions-From-Natural-Sources (April 2010). EPA 430-R-10-001, vol EPA 430-R-10-001. United States Environmental Protection Agency (EPA), USAGoogle Scholar
  5. 5.
    Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Heterogeneous catalytic decomposition of nitrous oxide. Appl Catal B 9(1):25–64Google Scholar
  6. 6.
    Debbagh MN, Lecea CSMD, Pe´rez-Ramı´rez J (2007) Catalytic reduction of N2O over steam-activated FeZSM-5 zeolite Comparison of CH4, CO, and their mixtures as reductants with or without excess O2. Appl Catal B 70(1):335–341Google Scholar
  7. 7.
    Martín JA, Yates M, Vila PA, Suárez S, Blanco J (2007) Nitrous oxide formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts. Appl Catal B 70(1):330–334Google Scholar
  8. 8.
    Galle M, Agar DW, Watzenberger O (2001) Thermal N2O decomposition in regenerative heat exchanger reactors. Chem Eng Sci 56(4):1587–1595Google Scholar
  9. 9.
    Alini S, Basile F, Blasioli S, Rinaldi C, Vaccari A (2007) Development of new catalysts for N2O-decomposition from adipic acid plant. Appl Catal B 70(1):323–329Google Scholar
  10. 10.
    Wilczkowska E, Krawczy K, Petryk J, Sobczak JW, Kaszkur Z (2010) Direct nitrous oxide decomposition with a cobalt oxide catalyst. Appl Catal A 389(1–2):165–172Google Scholar
  11. 11.
    Obalová L, Karásková K, Jirátová K, Kovanda F (2009) Effect of potassium in calcined Co–Mn–Al layered double hydroxide on the catalytic decomposition of N2O. Appl Catal B 90(1–2):132–140.  https://doi.org/10.1016/j.apcatb.2009.03.002 Google Scholar
  12. 12.
    Karásková K, Obalová L, Jirátová K, Kovanda F (2010) Effect of promoters in Co–Mn–Al mixed oxide catalyst on N2O decomposition. Chem Eng J 160(2):480–487.  https://doi.org/10.1016/j.cej.2010.03.058 Google Scholar
  13. 13.
    Hu X, Wu L, Ju S, Dong C, Yang Y, Qin W (2014) Mechanistic Study of Catalysis on the Decomposition of N2O. Environ Eng Sci 31(6):308–316.  https://doi.org/10.1089/ees.2013.0492 Google Scholar
  14. 14.
    Stelmachowski P, Zasada F, Piskorz W, Kotarba A, Paul JF, Sojka Z (2008) Experimental and DFT studies of N2O decomposition over bare and Co-doped magnesium oxide—insights into the role of active sites topology in dry and wet conditions. Catal Today 137(2–4):423–428.  https://doi.org/10.1016/j.cattod.2007.11.028 Google Scholar
  15. 15.
    Karásková K, Obalová L, Kovanda F (2011) N2O catalytic decomposition and temperature programmed desorption tests on alkali metals promoted Co–Mn–Al mixed oxide. Catal Today 176(1):208–211.  https://doi.org/10.1016/j.cattod.2010.12.055 Google Scholar
  16. 16.
    Yu Q, Wang H, Liu T, Xiao L, Jiang X, Zheng X (2012) High-efficiency removal of NOx using a combined adsorption-discharge plasma catalytic process. Environ Sci Technol 46(4):2337–2344.  https://doi.org/10.1021/es203405c Google Scholar
  17. 17.
    Khacef A, Costa PD, Djéga-Mariadassou G (2013) Plasma assisted catalyst for NOx remediation from lean gas exhaust. J Eng Technol Res 1(1):112–122Google Scholar
  18. 18.
    Masuda S, Nakao H (1990) Control of NOx by positive and negative pulsed corona discharges. IEEE Trans Ind Appl 26(2):374–383Google Scholar
  19. 19.
    Lee DH, Kim KT, Kang HS, Song YH, Park JE (2013) Plasma-assisted combustion technology for NOx reduction in industrial burners. Environ Sci Technol 47(19):10964–10970.  https://doi.org/10.1021/es401513t Google Scholar
  20. 20.
    Ul-ain B, Huang Y, Wang A, Ahmed S, Zhang T (2011) Microwave-assisted catalytic decomposition of N2O over hexaferrites. Catal Commun 16(1):103–107.  https://doi.org/10.1016/j.catcom.2011.09.019 Google Scholar
  21. 21.
    Krawczyk K, Młotek M (2001) Combined plasma-catalytic processing of nitrous oxide. Appl Catal B 30(3):233–245Google Scholar
  22. 22.
    Krawczyk K, Drozdowski M, Naperty K (2007) Nitrous oxide processing by a combination of gliding and microwave discharges. Catal Today 119(1–4):239–242.  https://doi.org/10.1016/j.cattod.2006.08.020 Google Scholar
  23. 23.
    Krawczyk K (2009) Conversion of nitrous oxide by positive pulsed corona discharge. IEEE Trans Plasma Sci 37(6):884–889Google Scholar
  24. 24.
    Schwefer M, Maurer R, Turek T, Kiigel M (2009) Method for the removal of NOx and N2O from the tail gas in nitric acid production (2009). US 7,485,276 B2Google Scholar
  25. 25.
    Sasaki T (2012) Method of removing N2O from waste gas. US 8,192,708 B2Google Scholar
  26. 26.
    Linjewile TM, Defilippis P, Agarwa K (2004) Postcombustion removal of N2O in a pulsed corona reactor, US Patent Application 20040200811 A1Google Scholar
  27. 27.
    Zhao GB, Hu X, Argyle MD, Radosz M (2004) N atom radicals and N2 (A3∑ u +) found to be responsible for nitrogen oxides conversion in nonthermal nitrogen Plasma. Ind Eng Chem Res 43(17):5077–5088Google Scholar
  28. 28.
    Zangouei M (2015) Experimental and kinetic modelling studies of NOx, N2O, and O3 in plasma discharges. The University of SydneyGoogle Scholar
  29. 29.
    Zangouei M, Haynes BS Mechanism development and chemical kinetics analysis of HxNyOz species in gliding arc discharge. In: Proceedings of the Australian combustion symposium, The University of Melbourne, 2015. pp 136–139Google Scholar
  30. 30.
    Kogelschatz U, Baessler P (1987) Determination of nitrous oxide and dinitrogen pentoxide concentrations in the output of air-fed ozone generators of high power density. Ozone Sci Eng 9:195–206Google Scholar
  31. 31.
    Braun D, Kuchler U, Pietsch G (1988) Behaviour of NO, in air-fed ozonizers. Pure Appl Chem 60(5):741–746Google Scholar
  32. 32.
    Soloshenko IA, Tsiolko VV, Pogulay SS, Terent’yeva AG, Bazhenov VY, Shchedrin AI, Ryabtsev AV, Kuzmichev AI (2007) The component content of active particles in a plasma-chemical reactor based on volume barrier discharge. Plasma Sources Sci Technol 16(1):56–66.  https://doi.org/10.1088/0963-0252/16/1/008 Google Scholar
  33. 33.
    Levko D, Shchedrin A, Chernyak V, Olszewski S, Nedybaliuk O (2011) Plasma kinetics in ethanol/water/air mixture in a ‘tornado’-type electrical discharge. J Phys D Appl Phys 44(14):145206.  https://doi.org/10.1088/0022-3727/44/14/145206 Google Scholar
  34. 34.
    Fridman A (2008) Plasma Chemistry. Cambridge University Press, Cambridge—see Fig 2.28, page 64 and Fig 2.30, page 65Google Scholar
  35. 35.
  36. 36.
    Phelps AV, Pitchford LC (1985) Anisotropic scattering of electrons by N2 and its effect on electron transport. Phys Rev A 31(5):2932Google Scholar
  37. 37.
    SIGLO database (2013) Retrieved 4 June 2013. http://www.lxcatlaplaceuniv-tlsefr
  38. 38.
    Lawton SA, Phelps AV (1978) Excitation of the b 1Σ + g state of O2 by low energy electrons. J Chem Phys 69(3):1055–1068Google Scholar
  39. 39.
    Phelps database (2013) Retrieved 4 June 2013. http://www.lxcatlaplaceuniv-tlsefr,
  40. 40.
    Itikawa Database (Updated 14 September 2012) www.lxcat.net. www.lxcat.net
  41. 41.
    Triniti Database (03 November 2010). www.lxcat.net
  42. 42.
    Herron JT (2001) Modeling studies of the formation and destruction of NO. Plasma Chem Plasma Process 21(4):581–609Google Scholar
  43. 43.
    Teodoru S, Kusano Y, Bogaerts A (2012) The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge. Plasma Processes Polym 9(7):652–689Google Scholar
  44. 44.
    Eichwald O, Guntoro NA, Yousfi M, Benhenni M (2002) Chemical kinetics with electrical and gas dynamics modelization for NOx removal in an air. J Phys D Appl Phys 35(2):439–450Google Scholar
  45. 45.
    Eliasson B, Kogelschatz U (1986) Electron impact dissociation in oxygen. J Phys B At Mol Phys 19(8):1241–1244Google Scholar
  46. 46.
    Sander SP, Friedl RR, Golden DM, Kurylo MJ, Wine PH, Ravishankara AR, Abbatt JPD, Burkholder JB, C E Kolb, Moortgat GK, Huie RE, Orkin VL (2011) Chemical kinetics and photochemical data for use in atmospheric studies. JPL Publication 10-6 Evaluation No. 17: http://jpldataeval.jpl.nasa.gov
  47. 47.
    Tsang W, Herron JT (1991) Chemical kinetic data base for propellant combustion I. Reactions involving NO, NO2, HNO, HNO2, HCN and N2O. J Phys Chem Ref Data 20(4):609–663Google Scholar
  48. 48.
    Tsang W, Hampson RF (1986) Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. J Phys Chem Ref Data 15 (3):1087–1279Google Scholar
  49. 49.
    Baulch DL, Cobos CJ, Cox RA, Esser C, Frank P, Just T, Kerr JA, Pilling MJ, Troe J, Walker RW (1992) Evaluated kinetic data for combustion modelling. J Phys Chem Ref Data 21(3):411–734Google Scholar
  50. 50.
    Atkinson R, Baulch DL, Cox RA, Hampson RF, Kerr JA, Rossi MJ, Troe J (1997) Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J Phys Chem Ref Data 26 (6):1329–1499Google Scholar
  51. 51.
    Herron JT (1999) Evaluated chemical kinetics data for reactions of N (2D), N (2P), and N2 (A 3Σu +) in the gas phase. J Phys Chem Ref Data 28(5):1453–1483Google Scholar
  52. 52.
    Manion JA, Huie RE, Levin RD, Burgess DR, Orkin VL, Tsang W, McGivern WS, Hudgens JW, Knyazev VD, Atkinson DB, Chai E, Tereza AM, Lin CY, Allison TC, Mallard WG, Westley F, Herron JT, Hampson RF, Frizzell DH (2013) NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version),. http://www.kineticsnistgov/
  53. 53.
    Pérez-Ramı́rez J, Kapteijn F, Mul G, Moulijn JA (2002) NO-assisted N2O decomposition over Fe-based catalysts: effects of gas-phase composition and catalyst constitution. J Catal 208(1):211–223Google Scholar
  54. 54.
    Obalová L, Jirátová K, Kovanda F, Pacultová K, Lacný Z, Mikulová Z (2005) Catalytic decomposition of nitrous oxide over catalysts prepared from Co/Mg–Mn/Al hydrotalcite-like compounds. Appl Catal B 60(3):289–297Google Scholar
  55. 55.
    Heyden A, Bell AT, Keil FJ (2005) Kinetic modeling of nitrous oxide decomposition on Fe-ZSM-5 based on parameters obtained from first-principles calculations. J Catal 233(1):26–35Google Scholar
  56. 56.
    Obalová L, Fíla V (2007) Kinetic analysis of N2O decomposition over calcined hydrotalcites. Appl Catal B 70(1):353–359Google Scholar
  57. 57.
    Inger M, Wilk M, Saramok M, Grzybek G, Grodzka A, Stelmachowski P, Makowski W, Kotarba A, Sojka Z (2014) Cobalt spinel catalyst for N2O abatement in the pilot plant operation—long term activity and stability in tail gases. Ind Eng Chem Res 53:10335–10342Google Scholar
  58. 58.
    Kaczmarczyk J, Zasada F, Janas J, Indyka P, Piskorz W, Kotarba A, Sojka Z (2016) Thermodynamic stability, redox properties, and reactivity of Mn3O4, Fe3O4, and Co3O4 model catalysts for N2O decomposition: resolving the origins of steady turnover. ACS Catal 6(2):1235–1246Google Scholar
  59. 59.
    Kameoka S, Kitaz K, Takeda T, Tanaka S, Ito S, Yuzaki K, Miyadera T, Kunimori K (2000) Simultaneous removal of N2O and CH4 as the strong greenhouse-effect gases over Fe-BEA zeolite in the presence of excess O2. Catal Lett 69(3–4):169–173Google Scholar
  60. 60.
    Yamashita T, Vannice A (1996) N2O decomposition over manganese oxides. J Catal 161(1):254–262Google Scholar
  61. 61.
    Naydenov A, Mehandjiev D (1993) Complete oxidation of benzene on manganese dioxide by ozone. Appl Catal A 97(1):17–22Google Scholar
  62. 62.
    Li W, Oyama ST (1998) Mechanism of ozone decomposition on a manganese oxide catalyst. 2. Steady-state and transient kinetic studies. J Am Chem Soc 120(35):9047–9052Google Scholar
  63. 63.
    Li W, Gibbs GV, Oyama ST (1998) Mechanism of ozone decomposition on a manganese oxide catalyst. 1. In situ Raman spectroscopy and ab initio molecular orbital calculations. J Am Chem Soc 120(35):9041–9046Google Scholar
  64. 64.
    Kogel M, Zied BMA, Schwefer M, Turek T (2001) The effect of NOx on the catalytic decomposition of nitrous oxide over Fe-MFI zeolites. Catal Commun 2(9):273–276Google Scholar
  65. 65.
    Kapteijn F, Marbán G, Rodriguez-Mirasol J, Moulijn JA (1997) Kinetic analysis of the decomposition of nitrous oxide over ZSM-5 catalysts. J Catal 167(1):256–265Google Scholar
  66. 66.
    Baulch DL, Bowman CT, Cobos CJ, Cox RA, Esser C, Frank P, Just T, Kerr JA, Pilling MJ, Stocker D, Troe J, Walker RW (2005) Evaluated kinetic data for combustion modeling: supplement II. J Phys Chem Ref Data 34(3):757–1397Google Scholar
  67. 67.
    Thielen K, Roth P (1986) N atom measurements in high-temperature N2 dissociation kinetics. AIAA J 24(7):1102–1105Google Scholar
  68. 68.
    Campbell IM, Gray CN (1973) Rate constants for O (3P) recombination and association with N (4S). Chem Phys Lett 18(4):607–609Google Scholar
  69. 69.
    Phillips LF, Schiff HI (1962) Mass spectrometric studies of atom reactions. I. Reactions in the atomic nitrogen-ozone system. J Chem Phys 36(6):1509–1517Google Scholar
  70. 70.
    Benson SW, Axworthy JAE (1957) Mechanism of the gas phase, thermal decomposition of ozone. J Chem Phys 26(6):1718–1726Google Scholar
  71. 71.
    Pshezhetskii SY, Morozov NM, Kamenetskaya SA, Siryatskaya VN, Gribova EI (1959) Kinetics of the thermal decomposition of ozone. Russ J Phys Chem 33:402Google Scholar
  72. 72.
    González M, Sayos R, Valero R (2002) Ab initio and kinetics study of the ground 1A″ potential energy surface of the O (1D) + N2O → 2NO, N2 + O2 (a1Δg) reactions. Chem Phys Lett 355(1):123–132Google Scholar
  73. 73.
    González M, Miquel I, Sayós R (2001) VTST kinetics study of the N (2D) + O2 (X3Σg −) → NO (X2Π) + O (3P, 1D) reactions based on CASSCF and CASPT2 ab initio calculations including excited potential energy surfaces. Chem Phys Lett 335(3):339–347Google Scholar
  74. 74.
    Gvozdev A, Nesterenko V, Nichipor G, Trubnikov V (1979) Kinetics of thermal decomposition of nitrous oxide in a 2NO2 = 2NO + O2 mixture. Vestsi Akad Navuk BSSR Ser Fiz Energ NavukGoogle Scholar
  75. 75.
    Itikawa Y (2006) Cross sections for electron collisions with nitrogen molecules. J Phys Chem Ref Data 35(1):31–53Google Scholar
  76. 76.
    Cosby PC (1993) Electron-impact dissociation of nitrogen. J Chem Phys 98(12):9544–9553Google Scholar
  77. 77.
    Eliasson B, Kogelschatz U, Baessler P (1984) Dissociation of O2 in N2/O2 mixtures. J Phys B At Mol Opt Phys 17(22):797–801Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia

Personalised recommendations