Plasma Chemistry and Plasma Processing

, Volume 38, Issue 6, pp 1239–1258 | Cite as

Diagnostics of Plasma Behavior and TiO2 Properties Based on DBD/TiO2 Hybrid System

  • Na LuEmail author
  • Yan Hui
  • Kefeng Shang
  • Nan Jiang
  • Jie Li
  • Yan Wu
Original Paper


Plasma catalysis is gaining increasing interest in environmental and energy applications, such as the destruction of gas pollutants and hydrocarbon conversion. In order to further improve the application of plasma catalysis, it is crucial to understand the fundamental mechanisms, especially the mutual interaction between plasma and catalyst. In this paper, a parallel-plate dielectric barrier discharge (DBD) reactor is developed to investigate the plasma behavior and TiO2 properties in the plasma/catalytic hybrid system. The introduction of TiO2 thin film coated on the dielectric improves the discharge intensity, which significantly contributes to the enhancement of reactive species and charges. The energy efficiency of generating ozone in DBD/TiO2 system has been approximately raised by 38% compared to pure DBD when the applied voltage reaches 13 kV. It is fortunately found that the discharge does not change the crystal structure of the TiO2, but the band gap increases from 3.13 to 3.39 eV, which has been proved to enhance the oxidizability of TiO2 in the degradation of methyl orange experiment under UV light. The FTIR and XPS spectra also demonstrate that N element is doped into the structure of TiO2. These results successfully illustrate the plasma behavior and catalyst properties in plasma/catalysis hybrid system and provide reference for the optimization of the plasma catalysis process.


DBD Plasma/catalytic system Plasma behavior TiO2 properties 



The authors gratefully acknowledge financial support from the Joint Funds of the National Natural Science Foundation of China under Grant No. U1462105.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Mei D, He YL, Liu S, Yan J, Tu X (2016) Plasma Process Polym 13:544–556CrossRefGoogle Scholar
  2. 2.
    Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC (2011) J Phys D Appl Phys 44:274007CrossRefGoogle Scholar
  3. 3.
    Mei D, Zhu X, Wu C, Ashford B, Williams PT, Tu X (2016) Appl Catal B 182:525–532CrossRefGoogle Scholar
  4. 4.
    Zhu X, Tu X, Mei D, Zheng C, Zhou J, Gao X, Luo Z, Ni M, Cen K (2016) Chemosphere 155:9–17CrossRefPubMedGoogle Scholar
  5. 5.
    Zeng Y, Zhu X, Mei D, Ashford B, Tu X (2015) Catal Today 256:80–87CrossRefGoogle Scholar
  6. 6.
    Wang TC, Lu N, Li J, Wu Y (2011) Environ Sci Technol 45:9301–9307CrossRefPubMedGoogle Scholar
  7. 7.
    Futamura S, Einaga H, Kabashima H, Hwan LY (2004) Catal Today 89:89–95CrossRefGoogle Scholar
  8. 8.
    Lu N, Bao X, Jiang N, Shang K, Li J, Wu Y (2017) Top Catal 60:855–868CrossRefGoogle Scholar
  9. 9.
    Malik MA (2003) Plasma Sources Sci Technol 8:5037–5043Google Scholar
  10. 10.
    Mei D, Zhu X, He YL, Yan JD, Tu X (2015) Plasma Sources Sci Technol 24:015011CrossRefGoogle Scholar
  11. 11.
    Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A (2015) Chem Rev 115:13408–13446CrossRefPubMedGoogle Scholar
  12. 12.
    Whitehead JC (2016) J Phys D Appl Phys 49:243001CrossRefGoogle Scholar
  13. 13.
    Snoeckx R, Bogaerts A (2017) Chem Soc Rev 46:5805–5863CrossRefPubMedGoogle Scholar
  14. 14.
    Bogaerts A, Neyts E (2018) ACS Energy Lett 3:1013–1027CrossRefGoogle Scholar
  15. 15.
    Peng P, Li Y, Cheng Y, Deng S, Chen P, Ruan R (2016) Plasma Chem Plasma Process 36:1201–1210CrossRefGoogle Scholar
  16. 16.
    Wu J, Huang Y, Xia Q, Li Z (2013) Plasma Chem Plasma Process 33:1073–1082CrossRefGoogle Scholar
  17. 17.
    Li Y, Fan Z, Shi J, Liu Z, Zhou J, Shangguan W (2014) Plasma Chem Plasma Process 34:801–810CrossRefGoogle Scholar
  18. 18.
    Neyts EC, Bogaerts A (2014) J Phys D Appl Phys 47:224010CrossRefGoogle Scholar
  19. 19.
    Tu X, Gallon HJ, Whitehead JC (2011) J Phys D Appl Phys 44:482003CrossRefGoogle Scholar
  20. 20.
    Van Laer K, Bogaerts A (2016) Plasma Sources Sci Technol 25:015002CrossRefGoogle Scholar
  21. 21.
    Van Laer K, Bogaerts A (2017) Plasma Process Polym 14:e1600129CrossRefGoogle Scholar
  22. 22.
    Van Laer K, Bogaerts A (2017) Plasma Sources Sci Technol 26:085007CrossRefGoogle Scholar
  23. 23.
    Kruszelnicki J, Engeling KW, Foster JE, Xiong Z, Kushner MJ (2017) J Phys D Appl Phys 50:025203CrossRefGoogle Scholar
  24. 24.
    Kim HH, Teramoto Y, Ogata A (2016) J Phys D Appl Phys 49:459501CrossRefGoogle Scholar
  25. 25.
    Butterworth T, Allen RWK (2017) Plasma Sources Sci Technol 26:065008CrossRefGoogle Scholar
  26. 26.
    Wang W, Kim HH, Van Laer K, Bogaerts A (2018) Chem Eng J 334:2467–2479CrossRefGoogle Scholar
  27. 27.
    Roland U, Holzer F, Kopinke FD (2005) Appl Catal B Environ 58:217CrossRefGoogle Scholar
  28. 28.
    Holzer F, Kopinke FD, Roland U (2005) Plasma Chem Plasma Process 25:595CrossRefGoogle Scholar
  29. 29.
    Hensel K, Martisovits V, Machala Z, Janda M, Lestinsky M, Tardiveau P, Mizuno A (2007) Plasma Process Polym 4:682CrossRefGoogle Scholar
  30. 30.
    Zhang Y-R, Van Laer K, Neyts EC, Bogaerts A (2016) Appl Catal B Environ 185:56–67CrossRefGoogle Scholar
  31. 31.
    Zhang Y-R, Neyts EC, Bogaerts A (2016) J Phys Chem C 120:25923–25934CrossRefGoogle Scholar
  32. 32.
    Zhang Q-Z, Bogaerts A (2018) Plasma Sources Sci Technol 27:035009CrossRefGoogle Scholar
  33. 33.
    Kim HH, Ogata A, Futamura S (2008) Appl Catal B 79:356–367CrossRefGoogle Scholar
  34. 34.
    Guaitella O, Thevenet F, Puzenat E, Guillard C, Rousseau A (2008) Appl Catal B 80:296–305CrossRefGoogle Scholar
  35. 35.
    Liu C, Wang J, Yu K, Eliasson B, Xia Q, Xue B, Zhang Y (2002) J Electrostat 54:149–158CrossRefGoogle Scholar
  36. 36.
    Guo YF, Ye DQ, Chen KF, He JC, Chen WL (2006) J Mol Catal A 245:93–100CrossRefGoogle Scholar
  37. 37.
    Pylinina AI, Mikhalenko II (2013) Theor Exp Chem 49:65–69CrossRefGoogle Scholar
  38. 38.
    Gallon HJ, Tu X, Twigg MV, Whitehead JC (2011) Appl Catal B 106:616–620CrossRefGoogle Scholar
  39. 39.
    Liu S, Neiger M (2003) J Phys D Appl Phys 36:3144–3150CrossRefGoogle Scholar
  40. 40.
    Birdsall CM, Jenkins AC, Spadinger E (1952) Anal Chem 24:662–664CrossRefGoogle Scholar
  41. 41.
    Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grübel G, Weller H (2005) Langmuir 21:1931–1936CrossRefPubMedGoogle Scholar
  42. 42.
    Guaitella O, Thevenet F, Guillard C, Rousseau A (2006) J Phys D Appl Phys 39:2964–2972CrossRefGoogle Scholar
  43. 43.
    Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Bogaerts A, Reniers F (2106) Plasma Sources Sci Technol 25:025013CrossRefGoogle Scholar
  44. 44.
    Dong L, Yin Z, Li X, Wang L (2003) Plasma Sources Sci Technol 12:380–388CrossRefGoogle Scholar
  45. 45.
    Nassar H, Pellerin S, Musio K, Martinie O, Pellerin N (2004) J Phys D Appl Phys 37:1904–1916CrossRefGoogle Scholar
  46. 46.
    Ohsaka T, Izumi F, Fujiki Y (1978) J Raman Spectrosc 7:321CrossRefGoogle Scholar
  47. 47.
    Zhang YH, Chan CK, Porter JF, Guo W (1998) J Mater Res 13:2602–2609CrossRefGoogle Scholar
  48. 48.
    Huang CM, Chen LC, Cheng KW, Pan GT (2007) J Mol Catal A 261:218–224CrossRefGoogle Scholar
  49. 49.
    Sing KSW, Everett DH, Haul RAW, Moscow L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  50. 50.
    Dumeignil F, Sato K, Imamura M, Matsubayashi N, Payen E, Shimada H (2003) Appl Catal A 241:319–329CrossRefGoogle Scholar
  51. 51.
    Kim DS, Han SJ, Kwak SY (2007) J Colloid Interface Sci 316:85–91CrossRefPubMedGoogle Scholar
  52. 52.
    Zheng ZK, Huang BB, Lu JB, Qin XY, Zhang XY, Dai Y (2011) Chem Eur J 17:15032CrossRefPubMedGoogle Scholar
  53. 53.
    Wang XL, He HL, Chen Y, Zhao JQ, Zhang XY (2012) Appl Surf Sci 258:5863CrossRefGoogle Scholar
  54. 54.
    Choi Y, Umebayashi T, Yoshikawa M (2004) J Mater Sci 39:1837–1839CrossRefGoogle Scholar
  55. 55.
    Li G, Chen L, Dimitrijevic NM, Gray KA (2008) Chem Phys Lett 451:75–79CrossRefGoogle Scholar
  56. 56.
    Sakthivel S, Janczarek M, Kisch H (2004) J Phys Chem B 108:19384–19387CrossRefGoogle Scholar
  57. 57.
    Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N (2009) J Am Chem Soc 131:12290–12297CrossRefPubMedGoogle Scholar
  58. 58.
    Chen X, Burda C (2004) J Phys Chem B 108:15446–15449CrossRefGoogle Scholar
  59. 59.
    Gyorgy E, Perez-Pino A, Serra P, Morenza JL (2003) Surf Coat Technol 173:265CrossRefGoogle Scholar
  60. 60.
    Xu W, Raftery D (2001) J Phys Chem B 105:4343CrossRefGoogle Scholar
  61. 61.
    Kobayakawa K, Murakami Y, Sato Y (2005) J Photochem Photobiol, A 170:177–179CrossRefGoogle Scholar
  62. 62.
    López R, Gómez R (2012) J Sol-Gel Sci Technol 61:1–7CrossRefGoogle Scholar
  63. 63.
    Monticone S, Tufeu R, Kanaev AV, Scolan E, Sanchez C (2000) Appl Surf Sci 162:565–570CrossRefGoogle Scholar
  64. 64.
    Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Hermann JM (2001) Appl Catal B Environ 31:145CrossRefGoogle Scholar
  65. 65.
    Bianco-Prevot A, Baiocchi C, Brussino MC, Pramauro E, Savarino P, Augugliaro V, Marci G, Palmisano L (2001) Environ Sci Technol 35:971CrossRefGoogle Scholar
  66. 66.
    Tanaka K, Padermpole K, Hisanaga T (2000) Water Res 34:327CrossRefGoogle Scholar
  67. 67.
    Galindo C, Jacques P, Kalt A (2000) J Photochem Photobiol A Chem 130:35CrossRefGoogle Scholar
  68. 68.
    Konstantinou IK, Albanis TA (2004) Appl Catal B 49:1–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Na Lu
    • 1
    • 2
    Email author
  • Yan Hui
    • 1
  • Kefeng Shang
    • 1
    • 2
  • Nan Jiang
    • 1
    • 2
  • Jie Li
    • 1
    • 2
  • Yan Wu
    • 1
    • 2
  1. 1.School of Electrical EngineeringDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)Dalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations