Advertisement

Plasma Chemistry and Plasma Processing

, Volume 38, Issue 5, pp 1095–1114 | Cite as

Numerical Simulation of Metal Vapour Behavior in Double Electrodes TIG Welding

  • X. WangEmail author
  • Y. Luo
  • G. Wu
  • L. Chi
  • D. Fan
Original Paper

Abstract

Metal vapour from the weld pool in double electrodes tungsten inert gas welding is taken into account by a unified numerical model including the arc plasma and the weld pool. The thermodynamic properties and transport coefficients of the arc plasma are dependent on both the local temperature and the mass fraction of the metal vapour. A second viscosity approximation is used to describe the diffusion coefficient of the metal vapour in the arc plasma. The temperature and the flow fields of both the arc plasma and the weld pool are calculated together with the metal vapour concentration. The simulated results are presented for the cases of 3 and 9 mm electrode separation, respectively. It is shown that the metal vapour behavior is much different in these two cases. In the case of 3 mm electrode separation, the metal vapour above the mass fraction of 0.2% is concentrated just above the weld pool surface, while in the case of 9 mm electrode separation, the metal vapour is diffused to the most region of the arc plasma for the same range of mass fraction. In addition, the arc plasma temperature as well as the heat flux at the weld pool is constricted by the presence of the metal vapour. The constricted heat flux at the weld pool results in an increase in the temperature of the weld pool about 100 K or less but a slight shrinkage of the weld pool shape.

Keywords

Metal vapour Double electrodes Welding Numerical simulation 

Notes

Acknowledgements

The authors are grateful to Dr. A. B. Murphy of CSIRO Materials Science and Engineering for his providing of mixture plasma properties of Ar–Fe. This work is supported by National Science Foundation of China (51705054) and Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant Nos. KJ1600903 and KJ1709197).

References

  1. 1.
    Kanemaru S, Sasaki T, Sato T, Era T, Tanaka M (2014) Study for TIG-MIG hybrid welding process. Weld World 58:11–18CrossRefGoogle Scholar
  2. 2.
    Tuěsk J, Suban M (2003) High-productivity multiple-wire submerged-arc welding and cladding with metal-powder addition. J Mater Process Technol 133:207–213CrossRefGoogle Scholar
  3. 3.
    Li KH, Chen JS, Zhang YM (2007) Double-electrode GMAW process and control. Weld J 86:s678–s689Google Scholar
  4. 4.
    Kobayashi K, Nishimura Y, Lijima T, Ushio M, Tanaka M, Shimamura J, Ueno Y, Yamashita M (2004) Practical application of high efficiency twin-arc TIG welding method for PCLNG storage tank. Weld World 48:35–39CrossRefGoogle Scholar
  5. 5.
    Sproesser G, Chang YJ, Pittner A, Finkbeiner M, Rethmeier M (2017) Environmental energy efficiency of single wire and tandem gas metal arc welding. Weld World 64:733–743CrossRefGoogle Scholar
  6. 6.
    Leng X, Zhang G, Wu L (2006) The characteristic of twin-electrode TIG coupling arc pressure. J Phys D Appl Phys 39:1120–1126CrossRefGoogle Scholar
  7. 7.
    Ogino Y, Hirata Y, Nomura K (2011) Numerical analysis of the heat source characteristics of two electrode TIG arc. J Phys D Appl Phys 44:215202–215208CrossRefGoogle Scholar
  8. 8.
    Schwedersky MB, Gonçalve s Silva RH, Dutra JC, Reisgen U, Willms K (2016) Two-dimensional arc stagnation pressure measurements for the double-electrode GTAW process. Sci Technol Weld Join 21:275–280CrossRefGoogle Scholar
  9. 9.
    Zhang G, Xiong J, Hu Y (2010) Spectroscopic diagnostics of temperatures for a non-axisymmetric coupling arc by monochromatic imaging. Meas Sci Technol 21:105502–105507CrossRefGoogle Scholar
  10. 10.
    Zhang G, Xiong J, Gao H, Wu L (2012) Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc. J Quant Spectrosc Radiat Transf 113:1938–1945CrossRefGoogle Scholar
  11. 11.
    Nomura K, Shirai K, Kishi T, Hirata Y (2015) Study on temperature measurement of two-electrode TIG arc plasma. Weld Int 29:493–501CrossRefGoogle Scholar
  12. 12.
    Tanaka M, Yamamoto K, Tashiro S, Nakata K, Yamamoto E, Yamazaki K, Suzuki K, Murphy AB, Lowke JJ (2010) Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding. J Phys D Appl Phys 43:434009CrossRefGoogle Scholar
  13. 13.
    Baeva M (2017) Non-equilibrium modeling of tungsten-inert gas arcs. Plasma Chem Plasma Process 37:341–370CrossRefGoogle Scholar
  14. 14.
    Ogino Y, Hirata Y, Kawata J, Nomura K (2013) Numerical analysis of arc plasma and weld pool formation by a tandem TIG arc. Weld World 57:411–423Google Scholar
  15. 15.
    Wang X, Fan D, Huang JK, Huang Y (2014) A unified model of coupled arc plasma and weld pool for double electrodes TIG welding. J Phys D Appl Phys 47:275202CrossRefGoogle Scholar
  16. 16.
    Schnick M, Füssel U, Hertelet M, Spille-Kohoff A, Murphy AB (2010) Metal vapour causes a central minimum in arc temperature in gas–metal arc welding through increased radiative emission. J Phys D Appl Phys 43:022001CrossRefGoogle Scholar
  17. 17.
    Murphy AB (2013) Influence of metal vapour on arc temperatures in gas–metal arc welding: convection versus radiation. J Phys D Appl Phys 46:224004CrossRefGoogle Scholar
  18. 18.
    Park H, Trautmann M, Tanaka K, Tanaka M, Murphy AB (2017) Mixing of multiple metal vapours into an arc plasma in gas tungsten arc welding of stainless steel. J Phys D Appl Phys 50:43LT03CrossRefGoogle Scholar
  19. 19.
    Menart J, Lin L (1999) Numerical study of a free-burning argon arc with copper contamination from the anode. Plasma Chem Plasma Process 19:153–170CrossRefGoogle Scholar
  20. 20.
    Murphy AB, Arundell CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen and argon-oxygen plasmas. Plasma Chem Plasma Process 14:451–490CrossRefGoogle Scholar
  21. 21.
    Murphy AB (1995) Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chem Plasma Process 15:279–307CrossRefGoogle Scholar
  22. 22.
    Murphy AB (2010) The effects of metal vapour in arc welding. J Phys D Appl Phys 43:434001CrossRefGoogle Scholar
  23. 23.
    Menart J, Malik S (2002) Net emission coefficients for argon–iron thermal plasmas. J Phys D Appl Phys 35:867–874CrossRefGoogle Scholar
  24. 24.
    Cram LE (1985) Statistical evaluation of radiative power losses from thermal plasmas due to spectral lines. J Phys D Appl Phys 18:401–411CrossRefGoogle Scholar
  25. 25.
    Wang X, Fan D, Huang JK, Huang Y (2015) Numerical simulation of arc plasma and weld pool in double electrodes tungsten inert gas welding. Int J Heat Mass Transf 85:924–934CrossRefGoogle Scholar
  26. 26.
    Fan D, Huang Z, Huang JK, Wang X, Huang Y (2015) Three-dimensional numerical analysis of interaction between arc and pool by considering the behavior of the metal vapour in tungsten inert gas welding. Acta Phys Sin 64:108102Google Scholar
  27. 27.
    Lago F, Gonzalez JJ, Freton P, Gleizes A (2004) A numerical modelling of an electric arc and its interaction with the anode: part I The two-dimensional model. J Phys D Appl Phys 37:883–897CrossRefGoogle Scholar
  28. 28.
    Razafinimanana M, Hamidi LE, Gleizes A, Vacquie S (1995) Experimental study of the influence of anode ablation on the characteristics of an argon transferred arc. Plasma Sources Sci Technol 4:501–510CrossRefGoogle Scholar
  29. 29.
    Murphy AB, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke JJ (2009) Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour. J Phys D Appl Phys 42:194006CrossRefGoogle Scholar
  30. 30.
    Heberlein J, Mentel J, Pfender E (2010) The anode region of electric arcs: a survey. J Phys D Appl Phys 43:023001CrossRefGoogle Scholar
  31. 31.
    Semenov IL, Krivtsun IV, Reisgen U (2016) Numerical study of the anode boundary layer in atmospheric pressure arc discharges. J Phys D Appl Phys 49:105204CrossRefGoogle Scholar
  32. 32.
    Sahoo P, Debroy T, McNallan MJ (1988) Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy. Metall Trans B 19:483–491CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChongqing University of TechnologyChongqingChina
  2. 2.Chongqing Municipal Engineering Research Center of Higher Education Institutions for Special Welding Materials and TechnologyChongqingChina
  3. 3.School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouChina
  4. 4.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalsLanzhouChina

Personalised recommendations