Plasma Chemistry and Plasma Processing

, Volume 38, Issue 1, pp 177–205 | Cite as

Influence of Wire Initial Composition on Anode Microstructure and on Metal Transfer Mode in GMAW: Noteworthy Role of Alkali Elements

  • F. Valensi
  • N. Pellerin
  • S. Pellerin
  • Q. Castillon
  • K. Dzierzega
  • F. Briand
  • J.-P. Planckaert
Review Article


Metal Active Gas (MAG) welding in presence of Argon and CO2 mixture as shielding gas is a largely developed process allowing the transfer of the liquid metal from the consumable wire anode to the workpiece according to various modes (short-arc, globular, spray-arc). The CO2 presence in the shielding gas leads to the formation of an oxide layer, or gangue, wrapping the droplet, limiting the access to the spray-mode transfer, taking into account the low conductivity and the high viscosity of this layer. Several electrodes of various compositions have been tested thanks to Flux Cored Arc Welding, to limit the gangue formation or its negative contribution, based on Ti, La, Zr and alkali metals addition or reduction in silicon content. The results are interpreted considering the metal transfer mode for a given current intensity (330 and 410 A), with various CO2 concentrations in the shielding gas. Finally, the role of the gangue, compared to the other factors governing the droplet detachment, is discussed. A decrease in silicon content limits significantly the gangue formation and gives access to spray arc transfer up to 30 vol.% of CO2 at 330 A. Titanium addition leads to the same results. The tests in presence of zirconium proved the conductivity improvement of the gangue. The addition of alkali allows to stabilize the spray arc up to the noteworthy value of 60 vol.% of CO2 at 330 A, supporting the hypothesis of a strong influence of viscosity on droplets detachment in the process.


Arc plasma GMAW Anode microstructure Metal transfer Alkali elements 



This work was supported in part by Air Liquide, Saint Ouen l’Aumone (France) in the frame of a CIFRE agreement, and by the Integrated Action Project Polonium 958055E.


  1. 1.
    Bacon JF, Hasapis AA (1959) Viscosity of molten silica. J Appl Phys 30:1470–1471CrossRefGoogle Scholar
  2. 2.
    Bockris JO’M, Mackenzie JD, Kitchener JA (1955) Viscous flow in silica and binary liquid silicates. Trans Faraday Soc 51:1734–1748CrossRefGoogle Scholar
  3. 3.
    Gaur K, Verma SC, Lal HB (1987) Defects and electrical conduction in mixed lanthanum transition metal oxides. Journal of Materials Science. 23:1725–1728CrossRefGoogle Scholar
  4. 4.
    Haidar J (1998) An analysis of the formation of metal droplets in arc welding. J Phys D Appl Phys 31:1233–1244CrossRefGoogle Scholar
  5. 5.
    Halden FA, Kingery WD (1955) effect of C, N, O and S on liquid iron surface tension and interfacial energy with Al2O3. J Phys Chem 59(6):557–559CrossRefGoogle Scholar
  6. 6.
    Handbook (1972) Handbook on property of liquid iron and slag, 1972. Iron and Steel Institute of Japan, TokyoGoogle Scholar
  7. 7.
    Hu J, Tsai HL (2006) Heat and mass transfer in gas metal arc welding. Part II. The metal. Int J Heat Mass Transf 50:808–820CrossRefGoogle Scholar
  8. 8.
    Iordachescu D, Quintino L (2008) Steps towards a new classification of metal transfer in gas metal arc welding. J Mat Proces Tech 202(1–3):391–397CrossRefGoogle Scholar
  9. 9.
    Jones LA, Eagar TW, Hang JH (1998) A dynamic model of drops detaching for gas metal arc welding electrodes. J Phys D Appl Phys 31:107–123CrossRefGoogle Scholar
  10. 10.
    Jones LA, Eagar TW, Hang JH (1998) Magnetic forces acting in molten drops on gas metal arc welding. J Phys D Appl Phys 31:93–106CrossRefGoogle Scholar
  11. 11.
    Khalil M (2003) Influence of iron content on the electrical and dielectric properties of La0.7Ba0.3Co1-yFeyO3. Zeitschrift für Physicalische Chemie. 217:1387–1398CrossRefGoogle Scholar
  12. 12.
    Kidd T, Gaskel DR (1986) Measurement of the surface tension of Fe-saturated iron silicates ant Fe-saturated calcium-ferrite meltes by Padday’s cone technique. Metall Trans B 17B:771–776CrossRefGoogle Scholar
  13. 13.
    Kozakevitch P (1949) Surface tension and viscosity of synthetic slags. Rev. Métallurg. 46(8):505–516CrossRefGoogle Scholar
  14. 14.
    Lancaster JF (1984) The physics of welding. Pergamon Press, Oxford, pp 204–234Google Scholar
  15. 15.
    Le Losq C, Neuville DR (2013) Effect of the Na/K mixing on the structure and the rheology of tectosilicate silica-rich melts. Chem Geol 346:57–71CrossRefGoogle Scholar
  16. 16.
    Leonidov IA, Kozhevnikov VL, Patrakeev MV, Mitberg EB, Poeppelmeier KR (2001) High-temperature electrical conductivity of Sr0.7La0.3FeO3-δ. Solide Stats Ionics. 144:361–369CrossRefGoogle Scholar
  17. 17.
    Mysen B, Richet P (2005) Silicate glasses and melts—properties and structure. Chap 10: Iron-bearing melts, 1st edn. Elsevier Science, AmsterdamGoogle Scholar
  18. 18.
    Nemchinsky VA (1996) The effect of the type of plasma gas on current constriction at the molten tip of an arc electrode. J Phys D Appl Phys 29:1202CrossRefGoogle Scholar
  19. 19.
    Nishioka K, Maeda T, Shimizu M (2005) Effect of FeO in dripping slag on drainage ability of slag. ISIJ Int 45(10):1506–1514CrossRefGoogle Scholar
  20. 20.
    Ohmori A, Park KC, Inuzuka M, Arata Y, Inoue K, Iwamoto N (1991) Electrical conductivity of plasma-sprayed titanium oxide (rutile) coatings. Thin Solid Films 201(1):1–8CrossRefGoogle Scholar
  21. 21.
    Schenk H, Frohberg MG, Rohde W (1961) Arch. Eisenmhüttenwes 32:521–523Google Scholar
  22. 22.
    Scotti A (2000) Mapping transfer modes for stainless steel gas metal are welding. Sci Technol Weld Joining 5:227–234CrossRefGoogle Scholar
  23. 23.
    Shlyakhtina AV, Shcherbakova LG (2011) Polymorphism and high-temperature conductivity of Ln2M2O7 (Ln = Sm-Lu; M = Ti, Zr, Hf) pyrochlores. Solid State Ionics 192:200–204CrossRefGoogle Scholar
  24. 24.
    Srivastava JK, Prasad M, Wagner JB Jr (1985) Electrical conductivity of silicon dioxide thermally grown on silicon. J Electrochem Soc 132(4):955–963CrossRefGoogle Scholar
  25. 25.
    Sumita S, Morinaga KJ, Yanagase T (1983) Physical properties and structure of binary ferrite melts. Trans Jpn Inst. Metals 24:35–41CrossRefGoogle Scholar
  26. 26.
    Tannhauser DS (1962) Conductivity of iron oxides. J Phys Chem Solids 23:25–34CrossRefGoogle Scholar
  27. 27.
    Valensi F, Pellerin S, de Izarra Ch, Pellerin N, Dzierzega K, Musioł K, Briand F (2008) Experimental investigations on anode in GMAW. In 8th Conference on trends in welding resarch, pp 417–424Google Scholar
  28. 28.
    Valensi F, Pellerin S, Castillon Q, Boutaghane A, Dzierzega K, Zielinska S, Pellerin N, Briand F (2013) Study of the spray to globular transition in gas metal arc welding: a spectroscopic investigation. J Phys D Appl Phys 46:224005CrossRefGoogle Scholar
  29. 29.
    Wang W, Liu S, Jones JE (1995) Flux cored arc welding: arc signals, processing and metal transfer characterizatio. Welding J pp 369 s–377 sGoogle Scholar
  30. 30.
    Wang Y, Tsai HL (2000) Impingement of filler droplets and weld pool dynamics during gas metal arc welding process. Int J Heat Mass Transf 44:2067–2080CrossRefGoogle Scholar
  31. 31.
    Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1995) Electrical conductivity of stabilized zirconia with ytterbia and Scandia. Solid State Ionics 79:137–142CrossRefGoogle Scholar
  32. 32.
    Zielinska S, Musioł K, Dzierzega K, Pellerin S, Valensi F, de Izarra Ch, Briand F (2007) Investigations of GMAW plasma by optical emission spectroscopy. Plasma Sources Sci Technol 16:832–838CrossRefGoogle Scholar
  33. 33.
    Zielinska S, Valensi F, Pellerin N, Pellerin S, Musiol K (2009) Microstructural analysis of the anode in gas metal arc welding. J Mat Process Tech 209:3581–3591CrossRefGoogle Scholar
  34. 34.
    Zhang S, Zhang X, Liu W, Lv X, Bai C, Wang L (2014) Relationship between structure and viscosity of CaO–SiO2–Al2O3–MgO–TiO2 slag. J Non-Cryst Solids 402:214–222CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • F. Valensi
    • 1
  • N. Pellerin
    • 2
  • S. Pellerin
    • 3
  • Q. Castillon
    • 3
  • K. Dzierzega
    • 4
  • F. Briand
    • 5
  • J.-P. Planckaert
    • 5
  1. 1.LAPLACE (Laboratoire Plasma et Conversion d’Energie)Université de Toulouse, UPS, INPTToulouse Cedex 9France
  2. 2.CNRS, CEMHTI UPR 3079, Université d’OrléansOrléansFrance
  3. 3.GREMI, UMR 7344, Université d’Orléans, CNRSBourges CedexFrance
  4. 4.Institute of PhysicsJagiellonian UniversityKrakówPoland
  5. 5.Air Liquide Research and Development, Paris-Saclay Research CenterLes Loges-En-JosasFrance

Personalised recommendations