Skip to main content
Log in

Pyrolysis and Oxidation of Methane in a RF Plasma Reactor

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The chemical kinetic effects of RF plasma on the pyrolysis and oxidation of methane were studied experimentally and computationally in a laminar flow reactor at 100 Torr and 373 K with and without oxygen addition into He/CH4 mixtures. The formation of excited species as well as intermediate species and products in the RF plasma reactor was measured with optical emission spectrometer and Gas Chromatography and the data were used to validate the kinetic model. The kinetic analysis was performed to understand the key reaction pathways. The experimental results showed that H2, C2 and C3 hydrocarbon formation was the major pathways for plasma assisted pyrolysis of methane. In contrast, with oxygen addition, C2 and C3 formation dramatically decreased, and syngas (H2 and CO) became the major products. The above results revealed oxygen addition significantly modified the chemistry of plasma assisted fuel pyrolysis in a RF discharge. Moreover, an increase of E/n was found to be more beneficial for the formation of higher hydrocarbons while a small amount of oxygen was presented in a He/CH4 mixture. A reaction path flux analysis showed that in a RF plasma, the formation of active species such as CH3, CH2, CH, H, O and O (1D) via the electron impact dissociation reactions played a critical role in the subsequent processes of radical chain propagating and products formation. The results showed that the electronically excitation, ionization, and dissociation processes as well as the products formation were selective and strongly dependent on the reduced electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Petitpasa G, Rollier J-D, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L (2007) A comparative study of non-thermal plasma assisted reforming technologies-a review. Int J Hydrogen Energy 32:2848–2867

    Article  Google Scholar 

  2. Jamal Y, Wyszynski ML (1994) On-board generation of hydrogen-rich gaseous fuels-a review. Int J Hydrogen Energy 19:557–572

    Article  CAS  Google Scholar 

  3. Yiguang J, Sun W (2015) Plasma assisted combustion: dynamics and chemistry. Prog Energy Combust 48:21–83

    Article  Google Scholar 

  4. Nozaki T, Okazaki K (2013) Non-thermal plasma catalysis of methane: principles, energy efficiency, and applications. Catal Today 211:29–38

    Article  CAS  Google Scholar 

  5. Guo X, Fang G, Li G (2014) Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344:616–619

    Article  CAS  Google Scholar 

  6. Liu H, Wierzbicki D, Debek R, Motak M, Grzybek T, Da Costa P, Gálvez ME (2016) La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures. Fuel 182:8–16

    Article  CAS  Google Scholar 

  7. Zhu T, Yang Z, Han M (2015) Performance evaluation of solid oxide fuel cell with in-situ methane reforming. Fuel 161:168–173

    Article  CAS  Google Scholar 

  8. Arp DJ, Sayavedra-Soto LA, Hommes NG (2002) Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch Microbiol 178:250–255

    Article  CAS  Google Scholar 

  9. Balasubramanian R, Rosenzweig AC (2007) Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Acc Chem Res 40:573–580

    Article  CAS  Google Scholar 

  10. Yang E-C, Hao J-K, Tang T-H, Wang B-W, Cao Y-Y (2003) The theoretical study of reaction paths and transition states on coupling reaction of methane through plasma. J Mol Struct 626:121–126

    Article  CAS  Google Scholar 

  11. Ren ZF, Huang ZP, Xu JW, Wang JH et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107

    Article  CAS  Google Scholar 

  12. Mitura S (1987) Nucleation of diamond powder particles in an RF methane plasma. J. Cryst Growth 80:417–424

    Article  CAS  Google Scholar 

  13. Katayama K, Fukada S, Nishikawa M (2010) Direct decomposition of methane using helium RF plasma. Fusion Eng Des 85:1381–1385

    Article  CAS  Google Scholar 

  14. Patino P, Perez Y, Caetano M (2005) Coupling and reforming of methane by means of low pressure radio-frequency plasmas. Fuel 84:2008–2014

    Article  CAS  Google Scholar 

  15. Tsai C-H, Hsieh T-H (2004) New approach for methane conversion using an rf discharge reactor. 1. Influences of operating conditions on syngas production. Ind Eng Chem Res 43:4043–4047

    Article  CAS  Google Scholar 

  16. Iskenderova K, Porshnev P, Gutsol A, Saveliev A, Fridman A, Kennedy L (2001) Methane conversion into syn-gas in gliding arc discharge. In: 15th international symposium on plasma chemistry, Orleans

  17. Kalra CS, Gutsol AF, Fridman AA (2005) Gliding arc discharges as a source of intermediate plasma for methane partial oxidation. IEEE Trans Plasma Sci 33(1):32–41

    Article  CAS  Google Scholar 

  18. Czernikowski A (2001) Glidarc assisted preparation of the synthesis gas from natural gas and waste hydrocarbons gases. Oil Gas Sci Technol Rev IFP 2(56):181–198

    Article  Google Scholar 

  19. Jasinski M, Dors M, Mizeraczyk J (2009) Destruction of Freon HFC-134a using a nozzleless microwave plasma source. Plasma Chem Plasma Process 29:363–372

    Article  CAS  Google Scholar 

  20. Shen C, Sun D, Yang H (2011) Methane coupling in microwave plasma under atmospheric pressure. J Nat Gas Chem 20:449–456

    Article  CAS  Google Scholar 

  21. Rusanov VD, Babaritskii AI, Geramisov EN, Deminskii MA, Demkin SA, Zhivotov VK (2003) Stimulation of the partial oxidation of methane in a microwave discharge. Dokl Phys 48(3):119–122

    Article  CAS  Google Scholar 

  22. Babararistkii I, Baranov IR, Bibikov MB, Demkin SA, Zhivotov VK, Konovalov GM (2004) Partial hydrocarbon oxidation processes induced by atmospheric-pressure microwave-discharge plasma. High Energy Chem 38(6):407–410

    Article  Google Scholar 

  23. Sun W, Uddi M, Won SH, Ombrello T, Carter C, Yiguang J (2012) Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits. Combust Flame 159:221–229

    Article  CAS  Google Scholar 

  24. Lefkowitz J, Uddi M, Windom BC, Lou G, Yiguang J (2014) In situ species diagnostics and kinetic study of plasma activated ethylene dissociation and oxidation in a low temperature flow reactor. Proc Combust Inst 35:3505–3512

    Article  Google Scholar 

  25. Khalifeh O, Mosallanejad A, Taghvaei H, Rahimpour MR (2016) Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies. Appl Energy 169:585–596

    Article  CAS  Google Scholar 

  26. Jemmer P (1999) Mathematical modeling and interpretation of reactive plasma chemistry. Math Comput Model 30:61–76

    Article  Google Scholar 

  27. Ropcke J, Mechold L, Kaning M, Fan WY, Davies PB (1999) Tunable diode laser diagnostic studies of H(2)–Ar–O(2) microwave plasmas containing methane or methanol. Plasma Chem Plasma Process 19:395–419

    Article  CAS  Google Scholar 

  28. Nair SA, Pemen AJM, Yan K, van Heesch EJM, Ptasinski KJ, Drinkenburg AAH (2004) Tar removal from biomass derived fuel gas by pulsed corona discharges—a chemical kinetic study. Ind Eng Chem Res 43:1649–1658

    Article  CAS  Google Scholar 

  29. Nair SA, Nozaki T, Okazaki K (2007) Methane oxidative conversion pathways in a dielectric barrier discharge reactor—investigation of gas phase mechanism. Chem Eng J 132:85–95

    Article  CAS  Google Scholar 

  30. Lee DH, Kim K-T, Cha MS, Song Y-H (2010) Plasma-controlled chemistry in plasma reforming of methane. Int J Hydrogen 35:10967–10976

    Article  CAS  Google Scholar 

  31. Kraus M, Egli W, Haffner K, Eliasson B, Kogelschatz U, Wokaun A (2002) Investigation of mechanistic aspects of the catalytic CO2 reforming of methane in a dielectric-barrier discharge using optical emission spectroscopy and kinetic modeling. Phys Chem Chem Phys 4:668–675

    Article  CAS  Google Scholar 

  32. Benilov MS, Naidis GV (2006) Modelling of hydrogen-rich gas production by plasma reforming of hydrocarbon fuels. Int J Hydrogen Energy 31:769–774

    Article  CAS  Google Scholar 

  33. Hughes KJ, Turanyi T, Clague AR, Pilling MJ (2001) Development and testing of a comprehensive chemical mechanism for the oxidation of methane. Int J Chem Kinet 33:513–538

    Article  CAS  Google Scholar 

  34. Indarto A, Choi JW, Lee H, Song HK (2005) Kinetic modelling of plasma methane conversion using gliding arc. J Nat Gas Chem 14:13–21

    CAS  Google Scholar 

  35. Luche Jocelyn, Aubry Olivier, Khacef Ahmed, Cormier Jean-Marie (2009) Syngas production from methane oxidation using a non-thermal plasma: experiments and kinetic modeling. Chem Eng J 149:35–41

    Article  CAS  Google Scholar 

  36. Lee DH, Kim K-T, Song Y-H, Kang WS, Jo S (2013) Mapping plasma chemistry in hydrocarbon fuel processing processes. Plasma Chem Plasma Process 33:249–269

    Article  CAS  Google Scholar 

  37. Fincke JR, Anderson RP, Hyde T, Detering BA (2002) Plasma thermal conversion of methane to acetylene. Plasma Chem Plasma Process 22(1):395–408

    Article  Google Scholar 

  38. Bourig A, Lago V, Martin JP, Pliavaka K, Pliavaka F, Gorbatov S, Chernukho A, Naumov V (2007) Generation of singlet oxygen in HV pulsed + DC crossed discharge at atmospheric pressure for oxygen-enhanced combustion. Int J Plasma Environ Sci Technol (IJEST) V1(1):57–63

    Google Scholar 

  39. Straub HC, Lin D, Lindsay BG, Smith KA, Stebbings RF (1997) Absolute partial cross sections for electron-impact ionization of CH4 from threshold to 1000 eV. J Chem Phys 106(11):4430–4435

    Article  CAS  Google Scholar 

  40. Janev RK, Reiter D (2002) Collision processes of CHy and CHy hydrocarbons with plasma electrons and protons. Phys Plasmas 9(9):4071–4081

    Article  CAS  Google Scholar 

  41. LAPLACE database (2016). http://www.lxcat.net. Accessed 29 Sept 2016

  42. Shen X, Yang X, Santner J, Sun J, Ju Y (2015) Experimental and kinetic studies of acetylene flames at elevated pressures. Proc Combust Inst 35:721–728. http://engine.princeton.edu/mechanism.html

  43. Goulay F, Trevitt AJ, Meloni G, Selby TM et al (2009) Cyclic versus linear lsomers produced by reaction of the methylidyne radical (CH) with small unsaturated hydrocarbons. J Am Chem Soc 131(3):993–1005

    Article  CAS  Google Scholar 

  44. Galland N, Caralp F, Hannachi Y et al (2003) Experimental and theoretical studies of the methylidyne CH (X2Π) radical reaction with ethane (C2H6): overall rate constant and product channels. J Phys Chem A 107(28):5419–5426

    Article  CAS  Google Scholar 

  45. Holroyd RA, Noyes WA Jr (1956) Photochemical studies. L. The ketene-oxygen system at higher temperatures. J Am Chem Soc 78(19):4831–4836

    Article  CAS  Google Scholar 

  46. Wang H, You X, Joshi AV, Davis SG, Laskin A, Egolfopoulos F, Law CK (2007) USC mech version II. High-temperature combustion reaction model of H2/CO/C1–C4 compounds. http://ignis.usc.edu/USC_MechII.htm

  47. Halberstadt ML, Crump J (1973) Insertion of methylene into the carbon–hydrogen bonds of the C1 to C4 alkanes. J Photochem 1(4):295–305

    Article  CAS  Google Scholar 

  48. Revel J, Boettner JC, Cathonnet M, Bachman JS (1994) Derivation of a global chemical kinetic mechanism for methane ignition and combustion. J Chim Phys 91(4):365–382

    Article  CAS  Google Scholar 

  49. Zyn VI (1998) Kinetic identification of a mechanism of complex plasma chemical reactions. Plasma Chem Plasma Process 18(3):395–408

    Article  CAS  Google Scholar 

  50. Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A (2015) Plasma catalysis: synergistic effects at the nanoscale. Chem Rev 115(24):13408–13446

    Article  CAS  Google Scholar 

  51. Starikovskaia SM (2006) Plasma assisted ignition and combustion. J Phys D Appl Phys 39:R265–R299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ACEE grand challenge grants, the Exxon Mobile research grant, the U.S. Department of Energy, Office of Science (DE-SC0015735),and the National Natural Science Foundation of China (51373021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiguang Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Yang, X., Sun, J. et al. Pyrolysis and Oxidation of Methane in a RF Plasma Reactor. Plasma Chem Plasma Process 37, 1551–1571 (2017). https://doi.org/10.1007/s11090-017-9844-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9844-4

Keywords

Navigation