Plasma Chemistry and Plasma Processing

, Volume 38, Issue 1, pp 45–61 | Cite as

Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet

  • J. C. Chamorro
  • L. Prevosto
  • E. Cejas
  • G. Fischfeld
  • H. Kelly
  • B. Mancinelli
Original Paper


A quantitative interpretation of the schlieren technique applied to a non-thermal atmospheric-pressure oxygen plasma jet driven at low-frequency (50 Hz) is reported. The jet was operated in the turbulent regime with a hole-diameter based Reynolds number of 13,800. The technique coupled to a simplified kinetic model of the jet effluent region allowed deriving the temporally-averaged values of the gas temperature of the jet by processing the gray-level contrast values of digital schlieren images. The penetration of the ambient air into the jet due to turbulent diffusion was taken into account. The calibration of the optical system was obtained by fitting the sensitivity parameter so that the oxygen fraction at the nozzle exit was unity. The radial profiles of the contrast in the discharge off case were quite symmetric on the whole outflow, but with the discharge on, relatively strong departures from the symmetry were evident in the near field. The time-averaged gas temperature of the jet was relatively high, with a maximum departure of about 55 K from the room temperature; as can be expected owing to the operating molecular gas. The uncertainty in the temperature measurements was within 6 K, primarily derived from errors associated to the Abel inversion procedure. The results showed an increase in the gas temperature of about 8 K close to the nozzle exit; thus suggesting that some fast-gas heating (with a heating rate ~0.3 K/μs) still occurs in the near field of the outflow.


Non-equilibrium plasma jet Gas temperature Turbulent air mixing Schlieren technique 



This work was supported by Grants from the CONICET (PIP 11220120100453), Universidad Tecnológica Nacional (PID 2264 and PID 4626) and ANPCyT (PICT 2015-1553). L. P. is a member of the CONICET. J. C. C. and E. C. thank CONICET for their doctoral fellowships.


  1. 1.
    Lua X, Naidis GV, Laroussi M, Reuter S, Graves DV, Ostrikov K (2016) Phys Rep 630:1–84CrossRefGoogle Scholar
  2. 2.
    Graves DB (2014) Phys Plasmas 21:080901CrossRefGoogle Scholar
  3. 3.
    Staack D, Farouk B, Gutsol A, Fridman A (2007) Plasma Sources Sci Technol 17:025013CrossRefGoogle Scholar
  4. 4.
    Kunhardt EE (2000) IEEE Trans Plasma Sci 28:189–200CrossRefGoogle Scholar
  5. 5.
    Fridman A, Chirokov A, Gutsol A (2005) J Phys D Appl Phys 38:R1–R24CrossRefGoogle Scholar
  6. 6.
    Park GY, Park SJ, Choi MY, Koo IG, Byun JH, Hong JW, Sim JY, Collins GJ, Lee JK (2012) Plasma Sources Sci Technol 21:043001CrossRefGoogle Scholar
  7. 7.
    Laroussi M, Kong MG, Morfill G, Stolz W (2012) Plasma medicine, vol 1. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. 8.
    Walsh JL, Kong MG (2011) Appl Phys Lett 99:081501CrossRefGoogle Scholar
  9. 9.
    Pei X, Lu X, Liu J, Liu D, Yang Y, Ostrikov K, Chu PK, Pan Y (2012) J Phys D Appl Phys 45:165205CrossRefGoogle Scholar
  10. 10.
    Yan W, Han ZJ, Liu WZ, Lu XP, Phung BT, Ostrikov K (2013) Plasma Chem Plasma Process 33:479–490CrossRefGoogle Scholar
  11. 11.
    Minotti F, Giuliani L, Xaubet M, Grondona D (2015) Phys Plasmas 22:113512CrossRefGoogle Scholar
  12. 12.
    Ovsyannikov AA, Zhukov MF (2005) Plasma diagnostics. Cambridge International Science Publishing, CambridgeGoogle Scholar
  13. 13.
    Settles GS (2001) Schlieren and shadowgraph techniques. Springer, BerlinCrossRefGoogle Scholar
  14. 14.
    Vasilev LA (1971) Schlieren methods. Keter Inc., New YorkGoogle Scholar
  15. 15.
    Jiang N, Yang J, He F, Cao Z (2011) J Appl Phys 109:093305CrossRefGoogle Scholar
  16. 16.
    Oh JS, Olabanji OT, Hale C, Mariani R, Kontis K, Bradley JW (2011) J Phys D Appl Phys 44:155206CrossRefGoogle Scholar
  17. 17.
    Bradley JW, Oh JS, Olabanji OT, Hale C, Mariani R, Kontis K (2011) IEEE Trans Plasma Sci 39:2312–2313CrossRefGoogle Scholar
  18. 18.
    Ghasemi M, Olszewski P, Bradley JW, Walsh JL (2013) J Phys D Appl Phys 46:052001CrossRefGoogle Scholar
  19. 19.
    Robert E, Sarron V, Darny T, Ries D, Dozias S, Fontane J, Joly L, Pouvesle JM (2014) Plasma Sources Sci Technol 23:012003CrossRefGoogle Scholar
  20. 20.
    Boselli M, Colombo V, Ghedini E, Gherardi M, Laurita R, Liguori A, Sanibondi P, Stancampiano A (2014) Plasma Chem Plasma Proc 34:853–869CrossRefGoogle Scholar
  21. 21.
    Kelly S, Golda J, Turner MM, Schulz-von der Gathen V (2015) J Phys D Appl Phys 48:444002CrossRefGoogle Scholar
  22. 22.
    Zheng Y, Wang L, Ning W, Jia S (2016) J Appl Phys 119:123301CrossRefGoogle Scholar
  23. 23.
    Qaisrani MH, Xian Y, Li C, Pei X, Ghasemi M, Lu X (2016) Phys Plasmas 23:063523CrossRefGoogle Scholar
  24. 24.
    Xu DA, Shneider MN, Lacoste DA, Laux CO (2014) J Phys D Appl Phys 47:235202CrossRefGoogle Scholar
  25. 25.
    Alvarez-Herrera C, Moreno-Hernández D, Barrientos-García B (2008) J Opt A: Pure Appl Opt 10:104014CrossRefGoogle Scholar
  26. 26.
    Kogelschatz U, Schneider WR (1972) Appl Opt 11:1822–1832CrossRefGoogle Scholar
  27. 27.
    Prevosto L, Artana G, Mancinelli B, Kelly H (2010) J Appl Phys 107:023304CrossRefGoogle Scholar
  28. 28.
    Prevosto L, Artana G, Kelly H, Mancinelli B (2011) J Appl Phys 109:063302CrossRefGoogle Scholar
  29. 29.
    Schmidt-Bleker A, Reuter S, Weltmann KD (2015) J Phys D Appl Phys 48:175202CrossRefGoogle Scholar
  30. 30.
    Akishev Y, Grushin M, Karalnik V, Petryakov A, Trushkin N (2010) J Phys D Appl Phys 43:075202CrossRefGoogle Scholar
  31. 31.
    Prevosto L, Kelly H, Mancinelli B, Chamorro JC, Cejas E (2015) Phys Plasmas 22:023504CrossRefGoogle Scholar
  32. 32.
    Raizer YuP (1991) Gas discharge physics. Springer, BerlinCrossRefGoogle Scholar
  33. 33.
    Kossyi IA, Kostinsky AYu, Matveyev AA, Silakov VP (1992) Plasma Sources Sci Technol 1:207–220CrossRefGoogle Scholar
  34. 34.
    Yolles RS, Wise H (1968) J Chem Phys 48:5109–5115CrossRefGoogle Scholar
  35. 35.
    Aleksandrov NL, Kindysheva SV, Nudnova MM, Starikovskiy AY (2010) J Phys D Appl Phys 43:255201CrossRefGoogle Scholar
  36. 36.
    Popov NA (2011) J Phys D Appl Phys 44:285201CrossRefGoogle Scholar
  37. 37.
    Hagelaar GJM, Pitchford LC (2005) Plasma Sources Sci. Technol. 14:722–733. Freeware code BOLSIG + version 07/2015. (2015)
  38. 38.
    Aleksandrov NL, Bazelyan EM, Kochetov IV, Dyatko NA (1997) J Phys D Appl Phys 30:1616–1624CrossRefGoogle Scholar
  39. 39.
    Xiao D, Cheng C, Shen J, Lan Y, Xie H, Shu X, Meng Y, Li J, Chu PK (2014) Phys Plasmas 21:053510CrossRefGoogle Scholar
  40. 40.
    Xiao D, Cheng C, Shen J, Lan Y, Xie H, Shu X, Meng Y, Li J, Chu PK (2014) J Appl Phys 115:033303CrossRefGoogle Scholar
  41. 41.
    Popov NA (2006) Plasma Phys Rep 32:237–245CrossRefGoogle Scholar
  42. 42.
    Prevosto L, Kelly H, Mancinelli B (2016) Plasma Chem Plasma Proc 36:973–992CrossRefGoogle Scholar
  43. 43.
    Knake N, Reuter S, Niemi K, Schulz-von der Gathen V, Winter J (2008) J Phys D Appl Phys 41:194006CrossRefGoogle Scholar
  44. 44.
    Alpher RA, White DR (1959) Phys Fluids 2:153–161CrossRefGoogle Scholar
  45. 45.
    National Institute of Standards and Technology. Engineering metrology toolbox. Last updated Nov 2004
  46. 46.
    Weber MJ (2002) Handbook of optical materials. CRC Press, Boca RatonCrossRefGoogle Scholar
  47. 47.
    Ungate CD, Harleman DR, Jirka GH (1975) Stability and mixing of submerged turbulent jets at low Reynolds numbers. MIT Energy Lab RepGoogle Scholar
  48. 48.
    Weissman S, Mason EA (1962) J Chem Phys 37:1289–1300CrossRefGoogle Scholar
  49. 49.
    Yu L, Laux CO, Packan DM, Kruger CH (2002) J Plasma Phys 91:2678–2686Google Scholar
  50. 50.
    Boeuf JP, Kunhardt EE (1986) J Appl Phys 60:915–923CrossRefGoogle Scholar
  51. 51.
    Mintoussov EI, Pendleton SJ, Gerbault FG, Popov NA, Starikovskaia SM (2011) J Phys D Appl Phys 44:285202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • J. C. Chamorro
    • 1
  • L. Prevosto
    • 1
  • E. Cejas
    • 1
  • G. Fischfeld
    • 2
  • H. Kelly
    • 1
  • B. Mancinelli
    • 1
  1. 1.Grupo de Descargas Eléctricas, Departamento Ing. ElectromecánicaFacultad Regional Venado Tuerto (UTN)Venado TuertoArgentina
  2. 2.Facultad de Ciencias ExactasIngeniería y Agrimensura (UNR)Santa FeArgentina

Personalised recommendations