Plasma Chemistry and Plasma Processing

, Volume 37, Issue 5, pp 1293–1311 | Cite as

Excitation Temperature and Constituent Concentration Profiles of the Plasma Jet Under Plasma Spray-PVD Conditions

Original Paper


Plasma spray-physical vapor deposition (PS-PVD) is a promising technology to produce columnar structured thermal barrier coatings with excellent cyclic lifetime. The characteristics of plasma jets generated by standard plasma gases in the PS-PVD process, argon and helium, have been studied by optical emission spectroscopy. Abel inversion was introduced to reconstruct the spatial characteristics. In the central area of the plasma jet, the ionization of argon was found to be one of the reasons for low emission of atomic argon. Another reason could be the demixing so that helium prevails around the central axis of the plasma jet. The excitation temperature of argon was calculated by the Boltzmann plot method. Its values decreased from the center to the edge of the plasma jet. Applying the same method, a spurious high excitation temperature of helium was obtained, which could be caused by the strong deviation from local thermal equilibrium of helium. The addition of hydrogen into plasma gases leads to a lower excitation temperature, however a higher substrate temperature due to the high thermal conductivity induced by the dissociation of hydrogen. A loading effect is exerted by the feedstock powder on the plasma jet, which was found to reduce the average excitation temperature considerably by more than 700 K in the Ar/He jet.


Plasma spray-PVD Ar/He plasma jet Excitation temperature Powder loading effect 



The authors would like to express their thanks to Mr. Ralf Laufs, Mr. Karl-Heinz Rauwald, and Mr. Frank Kurze for their help to operate the PS-PVD facility and Dr. José Marques for his insightful discussion in Universität der Bundeswehr München. The first author would like to acknowledge the support of China Scholarship Council.


  1. 1.
    Mauer G, Hospach A, Vaßen R (2013) Process conditions and microstructures of ceramic coatings by gas phase deposition based on plasma spraying. Surf Coat Technol 220:219–224CrossRefGoogle Scholar
  2. 2.
    Kim HJ, Hong SH (1995) Comparative measurements on thermal plasma jet characteristics in atmospheric and low pressure plasma sprayings. IEEE Trans Plasma Sci 23(5):852–859CrossRefGoogle Scholar
  3. 3.
    Mauer G, Vaßen R, Stöver D (2011) Plasma and particle temperature measurements in thermal spray: approaches and applications. J Therm Spray Technol 20(3):391–406CrossRefGoogle Scholar
  4. 4.
    Buchner P, Schubert H, Uhlenbusch J, Willée K (1999) Modeling and spectroscopic investigations on the evaporation of zirconia in a thermal rf plasma. Plasma Chem Plasma Process 19(3):341–362CrossRefGoogle Scholar
  5. 5.
    Green KM, Borras MC, Woskov PP, Flores GJ III, Hadidi K, Thomas P (2001) Electronic excitation temperature profiles in an air microwave plasma torch. IEEE Trans Plasma Sci 29(2):399–406CrossRefGoogle Scholar
  6. 6.
    Semenov S, Cetegen B (2001) Spectroscopic temperature measurements in direct current arc plasma jets used in thermal spray processing of materials. J Therm Spray Technol 10(2):326–336CrossRefGoogle Scholar
  7. 7.
    Yotsombat B, Davydov S, Poolcharaunsin P, Vilaithong T, Brown IG (2001) Optical emission spectra of a copper plasma produced by a metal vapour vacuum arc plasma source. J Phys D Appl Phys 34(12):1928–1932CrossRefGoogle Scholar
  8. 8.
    Jankowski K, Jackowska A (2007) Spectroscopic diagnostics for evaluation of the analytical potential of argon+helium microwave-induced plasma with solution nebulization. J Anal At Spectrom 22(9):1076–1082CrossRefGoogle Scholar
  9. 9.
    Refke A, Gindrat M, AG SM (2007) Process characterization of LPPS thin film processes with optical diagnostics. In: Marple BR, Hyland MM, Lau Y -C, Li C -J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Material Park, pp 826–831Google Scholar
  10. 10.
    Mauer G, Vaßen R, Stöver D (2010) Thin and dense ceramic coatings by plasma spraying at very low pressure. J Therm Spray Technol 19(1–2):495–501CrossRefGoogle Scholar
  11. 11.
    Hospach A, Mauer G, Vaßen R, Stöver D (2011) Columnar-structured thermal barrier coatings (TBCs) by thin film low-pressure plasma spraying (LPPS-TF). J Therm Spray Technol 20(1–2):116–120CrossRefGoogle Scholar
  12. 12.
    Zotov N, Hospach A, Mauer G, Sebold D, Vaßen R (2011) Deposition of La–Sr–Fe–Co perovskite coatings with different microstructures by low pressure plasma spraying. J Therm Spray Technol 21(3–4):7Google Scholar
  13. 13.
    Hospach A, Mauer G, Vaßen R, Stöver D (2012) Characteristics of ceramic coatings made by thin film low pressure plasma spraying (LPPS-TF). J Therm Spray Technol 21(3–4):435–440CrossRefGoogle Scholar
  14. 14.
    Mauer G, Vaßen R (2012) Plasma spray-PVD: plasma characteristics and impact on coating properties. J Phys Conf Ser 406:012005CrossRefGoogle Scholar
  15. 15.
    Mauer G (2014) Plasma characteristics and plasma-feedstock interaction under PS-PVD process conditions. Plasma Chem Plasma Process 34(5):1171–1186CrossRefGoogle Scholar
  16. 16.
    Rezanka S, Mauer G, Vaßen R (2014) Improved thermal cycling durability of thermal barrier coatings manufactured by PS-PVD. J Therm Spray Technol 23(1–2):182–189CrossRefGoogle Scholar
  17. 17.
    Chen Q-Y, Peng X-Z, Yang G-J, Li C-X, Li C-J (2015) Characterization of plasma jet in plasma spray-physical vapor deposition of YSZ using a <80 kW shrouded torch based on optical emission spectroscopy. J Therm Spray Technol 24(6):1038–1045CrossRefGoogle Scholar
  18. 18.
    Mauer G, Hospach A, Zotov N, Vaßen R (2013) Process development and coating characteristics of plasma spray-PVD. J Therm Spray Technol 22(2–3):83–89CrossRefGoogle Scholar
  19. 19.
    He W, Mauer G, Gindrat M, Wäger R, Vaßen R (2016) Investigations on the nature of ceramic deposits in plasma spray-physical vapor deposition. J Therm Spray Technol 26(1–2):83–92Google Scholar
  20. 20.
    Shanmugavelayutham G, Selvarajan V, Padmanabhan PVA, Sreekumar KP, Joshi NK (2007) Effect of powder loading on the excitation temperature of a plasma jet in DC thermal plasma spray torch. Curr Appl Phys 7(2):186–192CrossRefGoogle Scholar
  21. 21.
    Bockasten K (1961) Transformation of observed radiances into radial distribution of the emission of a plasma. J Opt Soc Am 51(9):943–947CrossRefGoogle Scholar
  22. 22.
    Mauer G, Marqués-López J-L, Vaßen R, Stöver D (2007) Detection of wear in one-cathode plasma torch electrodes and its impact on velocity and temperature of injected particles. J Therm Spray Technol 16(5–6):933–939CrossRefGoogle Scholar
  23. 23.
    NIST Atomic Spectra Database (ver. 5.3) (2015). Accessed 30 Nov 2015
  24. 24.
    Calzada M, Moisan M, Gamero A, Sola A (1996) Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface-wave-sustained discharge at atmospheric pressure. J Appl Phys 80(1):46–55CrossRefGoogle Scholar
  25. 25.
    van der Mullen JAM (1990) Excitation equilibria in plasmas; a classification. Phys Rep 191(2):109–220CrossRefGoogle Scholar
  26. 26.
    Mitchner M, Kruger CH (1973) Partially ionized gases. Wiley, New YorkGoogle Scholar
  27. 27.
    Rat V, Murphy A, Aubreton J, Elchinger M-F, Fauchais P (2008) Treatment of non-equilibrium phenomena in thermal plasma flows. J Phys D Appl Phys 41(18):183001CrossRefGoogle Scholar
  28. 28.
    Quintero M, Rodero A, Garcia M, Sola A (1997) Determination of the excitation temperature in a nonthermodynamic-equilibrium high-pressure helium microwave plasma torch. Appl Spectrosc 51(6):778–784CrossRefGoogle Scholar
  29. 29.
    Jonkers J, Van der Mullen J (1999) The excitation temperature in (helium) plasmas. J Quant Spectrosc Radiat Transfer 61(5):703–709CrossRefGoogle Scholar
  30. 30.
    Abel NH (1826) Auflösung einer mechanischen Aufgabe. Journal für die reine und angewandte Mathematik 1:5 (in German) Google Scholar
  31. 31.
    Chan GC-Y, Hieftje GM (2006) Estimation of confidence intervals for radial emissivity and optimization of data treatment techniques in Abel inversion. Spectrochim Acta Part B At Spectrosc 61(1):31–41CrossRefGoogle Scholar
  32. 32.
    Pretzler G (1991) A new method for numerical Abel-inversion. Z Naturforsch A Phys Sci 46(7):639–641Google Scholar
  33. 33.
    Pretzler G, Jäger H, Neger T, Philipp H, Woisetschläger J (1992) Comparison of different methods of abel inversion using computer simulated and experimental side-on data. Z Naturforsch A Phys Sci 47(9):955–970Google Scholar
  34. 34.
    Abel Inversion Algorithm (2013) © 1994–2017 The MathWorks, Inc. Accessed 20 Mar 2016
  35. 35.
    Ramsey A, Diesso M (1999) Abel inversions: error propagation and inversion reliability. Rev Sci Instrum 70(1):380–383CrossRefGoogle Scholar
  36. 36.
    Olsen H (1959) Thermal and electrical properties of an argon plasma. Phys Fluids (1958–1988) 2(6):614–623Google Scholar
  37. 37.
    Thornton JA (1986) The microstructure of sputter-deposited coatings. J Vac Sci Technol A 4(6):3059–3065CrossRefGoogle Scholar
  38. 38.
    Murphy A (2000) Transport coefficients of hydrogen and argon–hydrogen plasmas. Plasma Chem Plasma Process 20(3):279–297CrossRefGoogle Scholar
  39. 39.
    Gordon S, McBride BJ (1996) Computer program for calculation of complex chemical equilibrium compositions and applications—user’s manual and program description, part 2. NASA-Reference Publication 1311Google Scholar
  40. 40.
    Gordon S, McBride BJ (1994) Computer program for calculation of complex chemical equilibrium compositions and applications—analysis, part 1. NASA-Reference Publication, 1311Google Scholar
  41. 41.
    Murphy A (1997) Demixing in free-burning arcs. Phys Rev E 55(6):7473CrossRefGoogle Scholar
  42. 42.
    Gleizes A, Cressault Y (2017) Effect of metal vapours on the radiation properties of thermal plasmas. Plasma Chem Plasma Process 37(3):20CrossRefGoogle Scholar
  43. 43.
    Marotta A (1994) Determination of axial thermal plasma temperatures without Abel inversion. J Phys D Appl Phys 27(2):268CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Forschungszentrum Jülich GmbHIEK-1JülichGermany

Personalised recommendations