Plasma Chemistry and Plasma Processing

, Volume 37, Issue 4, pp 1133–1147 | Cite as

Synthesis of CdS Quantum Dots Using Direct Plasma Injection in Liquid Phase

  • M. ShariatEmail author
  • M. Karimipour
  • M. Molaei
Original Paper


In this work, we introduce a new method using non-equilibrium atmospheric pressure plasma jet (N-APPJ) for the synthesis of semiconductor quantum dots in liquid media with low power consumption at room temperature. In this method, the solution containing CdSO4, Na2S2O3 and thioglycolic acid (TGA) was treated by N-APPJ. Firstly, the key role of plasma applied voltage on the power consumption and the produced plasma reactive species was considered. We then continue to demonstrate that the optical properties such as absorption and photoluminescence of cadmium sulfide quantum dots (QDs) can carefully be controlled with the plasma parameters. Here, the effects of two major plasma parameters such as the plasma applied voltage and treatment time on the size of CdS QDs were investigated. The size of nanoparticles increases with the increase of the voltage and treatment time. It was also displayed that the change of the concentration of Na2S2O3 and TGA in the solution had no significant effect on the size of QDs in plasma method. Finally, X-ray diffraction, X-ray fluorescence spectrometry and transmission electron microscopy were employed to determine the composition, size and crystallinity of prepared CdS QDs.


Plasma–liquid interaction Cadmium sulfide nanoparticles Non-equilibrium atmospheric pressure plasma jet 

Supplementary material

Supplementary Movie

An aqueous solution surface of the CdS precursors was treated with the atmospheric pressure plasma jet for 20 min at 8 kv. It also exhibits that the CdS QDs which were initially incorporated in the solution were excited using plasma plume (WMV 1067 kb)


  1. 1.
    Kim M, Yang S, Boo J-H et al (2003) Surf Coat Technol 174:839–844CrossRefGoogle Scholar
  2. 2.
    Cao Z, Walsh JL, Kong MG (2009) Appl Phys Lett 94:021501CrossRefGoogle Scholar
  3. 3.
    Kment S, Kluson P, Zabova H et al (2009) Surf Coat Technol 204:667–675CrossRefGoogle Scholar
  4. 4.
    Ito Y, Urabe K, Takano N et al (2008) Appl Phys Express 1:067009CrossRefGoogle Scholar
  5. 5.
    Mashayekh S, Rajaee H, Akhlaghi M et al (2015) Phys Plasmas 22:093508CrossRefGoogle Scholar
  6. 6.
    Fridman G, Friedman G, Gutsol A et al (2008) Plasma Process Polym 5:503–533CrossRefGoogle Scholar
  7. 7.
    Fang J, Levchenko I, Ostrikov KK (2015) IEEE Trans Plasma Sci 43:765–769CrossRefGoogle Scholar
  8. 8.
    Merche D, Vandencasteele N, Reniers F (2012) Thin Solid Films 520:4219–4236CrossRefGoogle Scholar
  9. 9.
    Babayan S, Jeong J, Schütze A et al (2001) Plasma Sources Sci Technol 10:573CrossRefGoogle Scholar
  10. 10.
    Ghosh S, Liu T, Bilici M et al (2015) J Phys D Appl Phys 48:314003CrossRefGoogle Scholar
  11. 11.
    Ito Y, Sakai O, Tachibana K (2010) Thin Solid Films 518:3513–3516CrossRefGoogle Scholar
  12. 12.
    Baba K, Kaneko T, Hatakeyama R (2009) Appl Phys Express 2:035006CrossRefGoogle Scholar
  13. 13.
    Meiss SA, Rohnke M, Kienle L et al (2007) ChemPhysChem 8:50–53CrossRefGoogle Scholar
  14. 14.
    Richmonds C, Sankaran RM (2008) Appl Phys Lett 93:131501CrossRefGoogle Scholar
  15. 15.
    Huang X, Li Y, Zhong X et al (2015) Plasma Processes Polym 12:59–65CrossRefGoogle Scholar
  16. 16.
    Yan T, Zhong X, Rider AE et al (2014) Chem Commun 50:3144–3147CrossRefGoogle Scholar
  17. 17.
    Chen Q, Li J, Li Y (2015) J Phys D Appl Phys 48:424005CrossRefGoogle Scholar
  18. 18.
    Mariotti D, Sankaran RM (2010) J Phys D Appl Phys 43:323001CrossRefGoogle Scholar
  19. 19.
    Bruggeman P, Kushner MJ, Locke BR et al (2016) Plasma Sources Sci Technol 25:053002CrossRefGoogle Scholar
  20. 20.
    Alivisatos AP (1996) Science 271:933CrossRefGoogle Scholar
  21. 21.
    Gonçalves LFFF, Kanodarwala FK, Stride JA et al (2013) Opt Mater 36:186–190CrossRefGoogle Scholar
  22. 22.
    Ramaiah KS, Pilkington R, Hill A et al (2001) Mater Chem Phys 68:22–30CrossRefGoogle Scholar
  23. 23.
    Wang Y, Herron N (1991) J Phys Chem 95:525–532CrossRefGoogle Scholar
  24. 24.
    Danaher W, Lyons L, Morris G (1985) Solar Energy Mater 12:137–148CrossRefGoogle Scholar
  25. 25.
    Huang Y, Duan Y, Lieber CM (2005) Small 1:142–147CrossRefGoogle Scholar
  26. 26.
    Molaei M, Hasheminejad H, Karimipour M (2015) Electron Mater Lett 11:7–12CrossRefGoogle Scholar
  27. 27.
    Marandi M, Taghavinia N, Sedaghat Z et al (2008) Nanotechnology 19:225705CrossRefGoogle Scholar
  28. 28.
    Molaei M, Iranizad ES, Marandi M et al (2011) Appl Surf Sci 257:9796–9801CrossRefGoogle Scholar
  29. 29.
    Sostaric JZ, Caruso-Hobson RA, Mulvaney P et al (1997) J Chem Soc Faraday Trans 93:1791–1795CrossRefGoogle Scholar
  30. 30.
    Wu Y, Wang L, Xiao M et al (2008) J Non-Cryst Solids 354:2993–3000CrossRefGoogle Scholar
  31. 31.
    Yadav RS, Mishra P, Mishra R et al (2010) Ultrason Sonochem 17:116–122CrossRefGoogle Scholar
  32. 32.
    Richmonds C, Witzke M, Bartling B et al (2011) J Am Chem Soc 133:17582–17585CrossRefGoogle Scholar
  33. 33.
    Rumbach P, Bartels DM, Sankaran RM et al (2015) Nat Commun 6:7248CrossRefGoogle Scholar
  34. 34.
    Goto F, Ichimura M, Arai E (1997) Jpn J Appl Phys 36:L1146CrossRefGoogle Scholar
  35. 35.
    Hołub M (2012) Int J Appl Electromagn Mech 39:81–87Google Scholar
  36. 36.
    Murray C, Norris DJ, Bawendi MJ (1993) J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  37. 37.
    Yu WW, Qu L, Guo W et al (2003) Chem Mater 15:2854–2860CrossRefGoogle Scholar
  38. 38.
    Walsh JL, Shi J, Kong MG (2006) Appl Phys Lett 88:171501CrossRefGoogle Scholar
  39. 39.
    Jiang P-C, Wang W-C, Zhang S et al (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 122:107–112CrossRefGoogle Scholar
  40. 40.
    Wu WY, Schulman J, Hsu T-Y et al (1987) Appl Phys Lett 51:710–712CrossRefGoogle Scholar
  41. 41.
    Su H, Han J, Dong Q et al (2007) Nanotechnology 19:025601CrossRefGoogle Scholar
  42. 42.
    Mishra SK, Srivastava RK, Prakash S et al (2011) Electron Mater Lett 7:31–38CrossRefGoogle Scholar
  43. 43.
    Vigil O, Riech I, Garcia-Rocha M et al (1997) J Vac Sci Technol A 15:2282–2286CrossRefGoogle Scholar
  44. 44.
    Klug HP, Alexander LE (1954) X-ray diffraction procedures. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations