Plasma Chemistry and Plasma Processing

, Volume 37, Issue 3, pp 653–687 | Cite as

Steam Torch Plasma Modelling

Original Paper
  • 228 Downloads

Abstract

Numerical modelling of physical properties and processes in an electric arc stabilized by a water vortex (steam torch) has been summarized in this review paper. One-fluid MHD equations are numerically solved for an axisymmetric thermal plasma flow inside a discharge chamber of the steam plasma torch. The steady state solution results are discussed for the range of currents 300–600 A with relatively low steam flow rate of about 0.3 g s−1. The maximum obtained velocities and temperatures—8500 m s−1, 26,300 K, are reported at the centre of the nozzle exit for 600 A. The evaporation of water, i.e. mass flow rate of steam, was predicted from a comparison between the present simulation and experiments. The generated plasma is mildly compressible (M < 0.7) with the inertial forces overwhelming the magnetic, viscous, centrifugal and Coriolis forces with the factor of 103. Our calculations showed that the most significant processes determining properties of the arc are the balance of the Joule heat with radiation and radial conduction losses from the arc. Rotation of plasma column due to the tangential velocity component has a negligible effect on the overall arc performance, however, the rotation of water induces fluctuations in the arc and in the plasma jet with characteristic frequency which is related to the frequency of rotation of water. Reabsorption of radiation occurs at the radial position higher than 2.5 mm from the arc axis. The amount of reabsorbed radiation is between 17 and 28%. LTE conditions are satisfied in the arc column with the 2 mm radius. Comparison between the present simulations and experiments shows good agreement with the current–voltage characteristics, radial velocity and temperature profiles, as well as with the other related numerical simulation.

Keywords

Arc Evaporation Mass flow rate Water-vortex stabilization Net emission coefficients Partial characteristics Local thermodynamic equilibrium 

Notes

Acknowledgements

The author would like to thank Assoc. Prof. M. Hrabovský for many helpful discussions throughout the years in IPP. This work has been supported by the Grant Agency of the Czech Republic under the grant number GA15-19444S. Our appreciation goes also to the computational resources, provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures”.

References

  1. 1.
    Gerdien H, Lotz A (1922) Wiss Veroffentlichungen Siemenswerk 2:489Google Scholar
  2. 2.
    Gerdien H, Lotz A (1923) Z Tech Phys 4:157Google Scholar
  3. 3.
    Maecker H (1951) Z Phys 129:108–122CrossRefGoogle Scholar
  4. 4.
    Burnhorn F, Maecker H (1951) Z Phys 129:369–376CrossRefGoogle Scholar
  5. 5.
    Larentz RW (1951) Z Phys 129:343–364CrossRefGoogle Scholar
  6. 6.
    Weiss R (1954) Z Phys 138:170–182CrossRefGoogle Scholar
  7. 7.
    Burnhorn F, Maecker H, Peters T (1951) Z Phys 131:28–40CrossRefGoogle Scholar
  8. 8.
    Hrabovský M, Konrád M, Kopecký V, Sember V (1997) IEEE Trans Plasma Sci 25:833–839CrossRefGoogle Scholar
  9. 9.
    Hrabovský M, Kopecký V, Sember V (1994) Heat and mass transfer under plasma conditions. Begell House, New York, pp 91–98Google Scholar
  10. 10.
    Sember V (1998) CSc. PhD thesis, Academy of Sciences of the Czech Republic, PrahaGoogle Scholar
  11. 11.
    Hrabovský M, Konrád M, Kopecký V (1994) Heat and mass transfer under plasma conditions. Begell House, New York, pp 61–67Google Scholar
  12. 12.
    Chráska P, Hrabovský M (1992) In: Berndt CC (ed) International Thermal Spray Conference, Orlando, FL, May 28–June 5, ASM International, Materials Park, OH, USA, pp 81–85Google Scholar
  13. 13.
    Gross B, Grycz B, Miklossy K (1968) Plasma technology. Iliffe, LondonGoogle Scholar
  14. 14.
    Chráska T, Neufuss K, Dubský J, Ctibor P, Klementová M (2008) J Therm Spray Technol 17:872–877CrossRefGoogle Scholar
  15. 15.
    Chráska T, Hostomský J, Klementová M, Dubský J (2009) J Eur Ceram Soc 29:3159–3165CrossRefGoogle Scholar
  16. 16.
    Ctibor P, Ageorges H, Sedláček J, Čtvrtlík R (2010) Ceram Int 36:2155–2162CrossRefGoogle Scholar
  17. 17.
    Štengl V, Ageorges H, Ctibor P, Murafa N (2009) Photochem Photobiol Sci 8:733–738CrossRefGoogle Scholar
  18. 18.
    Van Oost G, Hrabovský M, Kopecký V, Konrád M, Hlína M, Kavka T, Chumak O, Beeckman E, Verstraeten J (2006) Vacuum 80:1132–1137CrossRefGoogle Scholar
  19. 19.
    Van Oost G, Hrabovský M, Kopecký V, Konrád M, Hlína M, Kavka T (2009) Vacuum 83:209–212CrossRefGoogle Scholar
  20. 20.
    Van Oost G, Hrabovsky M, Khvedchyn I, Sauchyn V, Shvarkov D (2013) Vacuum 88:165–168CrossRefGoogle Scholar
  21. 21.
    Lafon Ch, Girold Ch, Lemort F, Baronnet JM (2003) In: The 1st European Hydrogen Energy Conference, EHEC 2003, Grenoble, 2–5 September 2003, CP1/135Google Scholar
  22. 22.
    Jeništa J (1999) J Phys D Appl Phys 32:2763–2776CrossRefGoogle Scholar
  23. 23.
    Jeništa J (1999) J Phys D Appl Phys 32:2777–2784CrossRefGoogle Scholar
  24. 24.
    Gonzalez JJ, Jeništa J (1999) In: Hrabovský M, Konrád M, Kopecký V (eds) Proceedings of 14th international symposium plasma chemistry, LOC of the 14th ISPC, pp 355–360Google Scholar
  25. 25.
    Jeništa J (2003) J Phys D Appl Phys 36:2995–3006CrossRefGoogle Scholar
  26. 26.
    Jeništa J (2003) J High Temp Mater Process 7:11–16CrossRefGoogle Scholar
  27. 27.
    Jeništa J (2000) Czech J Phys 50(Suppl. S3):281–284CrossRefGoogle Scholar
  28. 28.
    Jeništa J, Bartlová M, Aubrecht V (2004) J High Temp Mater Process 8:195–206CrossRefGoogle Scholar
  29. 29.
    Jeništa J, Bartlová M, Aubrecht V (2006) Czech J Phys 56(Suppl. B):B1224–B1230CrossRefGoogle Scholar
  30. 30.
    Jeništa J, Bartlová M, Aubrecht V (2007) In: Complex Systems, AIP Conference Proceedings 982:554–560Google Scholar
  31. 31.
    Matas R (2001) In: Fluent 2001—7th User’s Conference, Třešt´, Sept. 19–1, 2001, pp 67–70 (in Czech)Google Scholar
  32. 32.
    Kotalík P (1998) In: Badalec J, Stockel J, Šunka P, Tendler M (eds) Proceedings of 25th international congress on plasma physics, European Physical Society, pp 2710–2713Google Scholar
  33. 33.
    Kotalík P (1999) PhD thesis, No. 4510, Central library of MFF UK, Centre for scientific informations, PrahaGoogle Scholar
  34. 34.
    Kotalík P (1999) In: Hrabovský M, Konrád M, Kopecký V (eds) 14th International symposium on plasma chemistry (ISPC 14), LOC of the 14th ISPC, pp 397–402Google Scholar
  35. 35.
    Kotalík P (2006) J Phys D Appl Phys 39:2522–2533CrossRefGoogle Scholar
  36. 36.
    Kotalík P (1993) Czech J Phys B 43:1165–1171CrossRefGoogle Scholar
  37. 37.
    Kotalík P (1996) Czech J Phys B 46:793–801CrossRefGoogle Scholar
  38. 38.
    Chau SW, Lub SY, Wang PJ (2011) Comput Phys Commun 182:152–154CrossRefGoogle Scholar
  39. 39.
    Chau SW, Hsu KL (2011) Comput Fluids 45:109–115CrossRefGoogle Scholar
  40. 40.
    Chau SW, Tai CM, Chen SH (2014) IEEE Trans Plasma Sci 42:3797–3808CrossRefGoogle Scholar
  41. 41.
    Křenek P, Hrabovský M (1993) In: Harry J (ed) Proceedings of 11th international symposium on plasma chemistry (ISPC-11), IOC of the 11th ISPC, pp 315–320Google Scholar
  42. 42.
    Gleizes A, Gonzalez JJ, Riad H (1995) In: Heberlein JV, Ernie DW, Roberts JT (eds) Proceedings of 12th international symposium on plasma chemistry (ISPC 12), IOC of the 12th ISPC, pp 1731–1736Google Scholar
  43. 43.
    Sember V (1994) Heat and mass transfer under plasma conditions. Begell House, New York, pp 143–149Google Scholar
  44. 44.
    Patanakar SV (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New YorkGoogle Scholar
  45. 45.
    Hrabovský M, Konrád M, Kopecký V, Sember V (1995) In: Heberlein JV, Ernie DW, Roberts JT (eds) Proceedings of 12th international sympodium on plasma chemistry (ISPC 12), IOC of the 12th ISPC, pp 1627–1632Google Scholar
  46. 46.
    Jeništa J (2000) Czech J Phys 50(Suppl. S3):281–284CrossRefGoogle Scholar
  47. 47.
    Jeništa J, Kopecký V, Hrabovský M (1999) In: Fauchais P et al (eds) Heat and Mass Transfer under Plasma Conditions—Annals of the New York Academy of Sciences 891:64–71Google Scholar
  48. 48.
    Soloukhin RI (1980) Radiative heat transfer in high-temperature gases. Hemisphere, LondonGoogle Scholar
  49. 49.
    Sevast’yanenko VG (1979) J. Eng Physics 36:138–148CrossRefGoogle Scholar
  50. 50.
    Aubrecht V, Bartlová M, Urban F, Valenta J (2004) In: Bordage MC, Gleizes A, Gonzalez JJ (eds) Proceedings of 15th international conference gas discharges and their applications (GD 2004), LOC of GD 2004, pp 141–144Google Scholar
  51. 51.
    Aubrecht V, Lowke JJ (1994) J Phys D Appl Phys 27:2066–2073CrossRefGoogle Scholar
  52. 52.
    Aubrecht V, Bartlová M (1997) IEEE Trans Plasma Sci 25:815–823CrossRefGoogle Scholar
  53. 53.
    Liebermann RW, Lowke JJ (1976) J Quant Spectrosc Radiat Transf 16:253–264CrossRefGoogle Scholar
  54. 54.
    Bartlová M, Aubrecht V (2006) Czech J Phys 56(Suppl. B):B632–B637CrossRefGoogle Scholar
  55. 55.
    Freton P, Gonzalez JJ, Gleizes A, Peyret FC, Caillibotte G, Delzenne M (2002) J Phys D Appl Phys 35:115–131CrossRefGoogle Scholar
  56. 56.
    Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas. Plenum Press, New YorkCrossRefGoogle Scholar
  57. 57.
    Mitchner M, Kruger CH Jr (1973) Partially ionized gases. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Plasma Physics AS CRPraha 8Czech Republic

Personalised recommendations