Plasma Chemistry and Plasma Processing

, Volume 37, Issue 3, pp 739–762 | Cite as

Steam Plasma Treatment of Organic Substances for Hydrogen and Syngas Production

  • M. Hrabovsky
  • M. Hlina
  • V. Kopecky
  • A. Maslani
  • O. Zivny
  • P. Krenek
  • A. Serov
  • O. Hurba
Original Paper

Abstract

Gasification of several organic materials in steam plasma generated in a special plasma torch with a water-stabilized arc was investigated. Thermal plasma with very high enthalpy and low mass flow rate is produced in an arc discharge which is in direct contact with water. Biomass and several types of solid and liquid organic waste were gasified by plasma aided reactions of materials with water, carbon dioxide and oxygen. Composition of produced gas, energy balance of gasification process and gasification efficiency were determined from measured data. Synthesis gas with high content of hydrogen and carbon monoxide and very low content of carbon dioxide, light hydrocarbons and tar was obtained for all tested materials. Comparison of measured data with results of theoretical computations confirmed that steam plasma gasification produces syngas with composition which is close to the one obtained from thermodynamic equilibrium calculations.

Keywords

Plasma gasification Thermal plasma Steam plasma Syngas Organic waste 

Notes

Acknowledgements

The authors gratefully acknowledge support of the Grant Agency of CR under the Project Number GA15-19444S.

References

  1. 1.
    Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41:053001CrossRefGoogle Scholar
  2. 2.
    Gomez E, Amutha Rani D, Cheeseman CR, Deegan D, Wise M, Boccaccini AR (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mat 161:614–626CrossRefGoogle Scholar
  3. 3.
    Ruj B, Ghosh S (2014) Technological aspects for thermal plasma treatment of municipal solid waste—a review. Fuel Process Technol 126:298–308CrossRefGoogle Scholar
  4. 4.
    Moustakas M, Fatta D, Malamis S, Haralambous K, Loizidou M (2005) Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J Hazard Mater 123:120–126CrossRefGoogle Scholar
  5. 5.
    Katou K, Asou T, Kurauchi Y, Sameshima R (2001) Melting municipal solid waste incineration residue by plasma melting furnace with a graphite electrode. Thin Solid Films 386:183–188CrossRefGoogle Scholar
  6. 6.
    Sakai S, Hiaraoka M (2000) Municipal solid waste incinerator residue recycling by thermal processes. Waste Manag 20:249–258CrossRefGoogle Scholar
  7. 7.
    Cheng TW, Chu JP, Tzeng CC, Chen YS (2002) Treatment and recycling of incinerated ash using thermal plasma technology. Waste Manag 22:485–490CrossRefGoogle Scholar
  8. 8.
    Rutberg PG, Kuznetsov VA, Serba EO, Popov SD, Surov AV, Nakonechny GV, Nikonov AV (2013) Novel three-phase steam–air plasma torch for gasification of high-caloric waste. Appl Energy 108:505–514CrossRefGoogle Scholar
  9. 9.
    Chen X, Badie JM, Flamant G (1997) Dynamics of complex chemical system vaporization at high temperature. Application to the vitrification of fly ashes by thermal plasma. Chem Eng Sci 52:4381–4391CrossRefGoogle Scholar
  10. 10.
    Poiroux R, Rollin M (1996) High temperature treatment of waste: from laboratories to the industrial stage. Pure Appl Chem 68:1035–1040CrossRefGoogle Scholar
  11. 11.
    Plasco Energy Group (2016). http://www.plascoenergygroup.com/. Accessed 17 Oct 2016
  12. 12.
    Pyrogenesis (2016). http://www.pyrogenesis.com/. Accessed 17 Oct 2016
  13. 13.
    CO Tetronics (2016). http://www.tetronics.com/. Accessed 17 Oct 2016
  14. 14.
    Solena (2016). http://www.solenagroup.com/. Accessed 17 Oct 2016
  15. 15.
    AlterNrg (2016). http://www.alternrg.com/. Accessed 17 Oct 2016
  16. 16.
    Retech (2016). http://www.retechsystemsllc.com/products/pact/. Accessed 17 Oct 2016
  17. 17.
    Boerrigter H, van der Drift B (2005) “Biosyngas” key-intermediate for production of renewable transportation fuels, chemicals and electricity. In: 14th European biomass conference and exhibition, Paris. ECN report ECN-RX-05-181Google Scholar
  18. 18.
    Surisetty VR, Kozinski J, Dalai AK (2012) Biomass, availability in Canada, and gasification: an overview. Biomass Conv Bioref 2:73–85CrossRefGoogle Scholar
  19. 19.
    Fabry F, Rehmet Ch, Rohani V, Fulcheri L (2013) Waste gasification by thermal plasma: a review. Waste Biomass Valoriz 4:421–439CrossRefGoogle Scholar
  20. 20.
    Hrabovsky M, Kopecky V, Sember V, Kavka T, Chumak O (2006) Properties of hybrid water/gas DC arc plasma torch. IEEE Trans Plasma Sci 34:1566–1575CrossRefGoogle Scholar
  21. 21.
    Hrabovsky M (2002) Generation of thermal plasmas in liquid and hybrid DC arc torches. Pure Appl Chem 74:429–433CrossRefGoogle Scholar
  22. 22.
    Hrabovsky M, Konrad M, Kopecky V, Hlina J, Benes J, Vesely E (1997) Motion of anode attachment and fluctuations of plasma jet in dc arc plasma torch. High Temp Mat Process 1:167–178CrossRefGoogle Scholar
  23. 23.
    Coufal O (1994) Composition of the reacting mixture SF6 and Cu in the range from 298.15 to 3000 K and 0.1 to 2 Mpa. High Temp Mat Process 3:117–139Google Scholar
  24. 24.
    Coufal O, Sezemsky P, Zivny O (2005) Database system of thermodynamic properties of individual substances at high temperatures. J Phys D Appl Phys 38:1265–1274CrossRefGoogle Scholar
  25. 25.
    Hrabovsky M, Konrad M, Kopecky V, Hlina M (2006) Pyrolysis of wood in arc plasma for syngas production. High Temp Mat Process 10:557–570CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. Hrabovsky
    • 1
  • M. Hlina
    • 1
  • V. Kopecky
    • 1
  • A. Maslani
    • 1
  • O. Zivny
    • 1
  • P. Krenek
    • 1
  • A. Serov
    • 1
  • O. Hurba
    • 1
  1. 1.Institute of Plasma Physics ASCRPraha 8Czech Republic

Personalised recommendations