Plasma Chemistry and Plasma Processing

, Volume 36, Issue 3, pp 783–797 | Cite as

Low Temperature Diesel Particulate Filter Regeneration by Atmospheric Air Non-thermal Plasma Injection System

  • Yunxi ShiEmail author
  • Yixi Cai
  • Xiaohua Li
  • Hui Xu
  • Weijun Li
  • Xiaoyu Pu
Original Paper


An experimental study of the regeneration of diesel particulate filter (DPF) was conducted through the use of a self-designed Non-thermal plasma (NTP) injection system with an experimental temperature of 20–300 °C, with atmospheric air being used as the gas source. The results revealed that the PM could be broken down into CO and CO2 by NTP, through a discharge reaction of the NTP reactor. As the temperature increases, the mass of C1 (mass of C in CO) showed an overall declining trend. Interestingly, the mass of C2 (mass of C in CO2) and C12 (the sum of C1 and C2) both showed an initial increase, followed by a decrease. The peak mass of C12 appears at 150 °C, and both axial and radial temperature gradients are less than the limit of DPF temperature gradient at this temperature. In conclusion, DPF can be regenerated by the NTP technology at a lower temperature, which can aid in the avoidance of thermal damage of DPF. The technology boasts a great advantage in adopting atmospheric air as its gas source, which can not only reduce costs, but also is convenient.


Diesel engine Diesel particulate filter Regeneration Non-thermal plasma Air Temperature 



This work is currently supported by the National Natural Science Foundation of China (No. 51176067), the Priority Academic Program Development of Jiangsu Higher Education Institutions ([2011]No.6), and the Graduate Students Scientific Research Innovation Project of Jiangsu Ordinary University (KYLX15_1070).


  1. 1.
    Ravindraa K, Sokhia R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921CrossRefGoogle Scholar
  2. 2.
    Tan PQ, Hu ZY, Deng KY, Lu JX, Lou DM, Wan G (2007) Particulate matter emission modelling based on soot and SOF from direct injection diesel engines. Energy Convers Manag 48(2):510–518CrossRefGoogle Scholar
  3. 3.
    Agarwal AK, Gupta T, Shukla PC, Dhar A (2015) Particulate emissions from biodiesel fuelled CI engines. Energy Conver Manag 94:311–330CrossRefGoogle Scholar
  4. 4.
    Mokhria MA, Abdullaha NR, Abdullaha SA, Kasalonga S, Mamatb R (2012) Soot filtration recent simulation analysis in diesel particulate filter (DPF). Proc Eng 41:1750–1755CrossRefGoogle Scholar
  5. 5.
    Feng X, Ge Y, Ma C, Tan J, Linxiao Yu, Li J, Wang X (2014) Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst. Sci Total Environ 472:56–62CrossRefGoogle Scholar
  6. 6.
    Palma V, Ciambelli P, Meloni E, Sin A (2013) Study of the catalyst load for a microwave susceptible catalytic DPF. Catal Today 216:185–193CrossRefGoogle Scholar
  7. 7.
    Chen P, Wang J (2014) Air-fraction modeling for simultaneous diesel engine NOx and PM emissions control during active DPF regenerations. Appl Energy 122:310–320CrossRefGoogle Scholar
  8. 8.
    Bensaid S, Marchisio DL, Fino D, Saracco G, Specchia V (2009) Modelling of diesel particulate filtration in wall-flow traps. Chem Eng J 154:211–218CrossRefGoogle Scholar
  9. 9.
    Beatrice C, Di Iorio S, Guido C, Napolitano P (2012) Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies. Exp Thermal Fluid Sci 39:45–53CrossRefGoogle Scholar
  10. 10.
    Chen K, Martirosyan KS, Luss D (2010) Temperature excursions during soot combustion in a diesel particulate filter. Ind Eng Chem Res 49:10358–10363CrossRefGoogle Scholar
  11. 11.
    Palmaa V, Ciambellia P, Melonia E, Sinb A (2015) Catalytic DPF microwave assisted active regeneration. Fuel 140:50–61CrossRefGoogle Scholar
  12. 12.
    Chen P, Ibrahim U, Wang J (2014) Experimental investigation of diesel and biodiesel post injections during active diesel particulate filter regenerations. Fuel 130:286–295CrossRefGoogle Scholar
  13. 13.
    Chen K, Martirosyan KS, Luss D (2011) Temperature gradients within a soot layer during regeneration. Chem Eng Sci 66:2968–2973CrossRefGoogle Scholar
  14. 14.
    Song J, Wang J, Boehman AL (2006) The role of fuel-borne catalyst in diesel particulate oxidation behavior. Combust Flame 146:73–84CrossRefGoogle Scholar
  15. 15.
    Okubo M, Kuroki T, Kawasaki S et al (2010) Single-stage simultaneous reduction of diesel particulate and NOx using oxygen-lean nonthermal plasma application. IEEE Trans Ind Appl 46:2143–2150CrossRefGoogle Scholar
  16. 16.
    Yamamoto K, Sakai T (2015) Simulation of continuously regenerating trap with catalyzed DPF. Catal Today 242:357–362CrossRefGoogle Scholar
  17. 17.
    Kurokia T, Fujishimab H, Otsukac K, Itoa T, Okuboa M, Yamamotod T, Yoshidab K (2008) Continuous operation of commercial-scale plasma–chemical aftertreatment system of smoke tube boiler emission with oxidation reduction potential and pH control. Thin Solid Films 516(19):6704–6709CrossRefGoogle Scholar
  18. 18.
    Kuwahara T, Kuroki T, Yoshida K, Saeki N, Okubo M (2012) Development of sterilization device using air nonthermal plasma jet induced by atmospheric pressure corona discharge. Thin Solid Films 523:2–5CrossRefGoogle Scholar
  19. 19.
    Sivachandirana L, Theveneta F, Rousseaub A (2015) Isopropanol removal using MnXOY packed bed non-thermal plasma reactor: comparison between continuous treatment and sequential sorption/regeneration. Chem Eng J 270(15):327–335CrossRefGoogle Scholar
  20. 20.
    Reddy EL, Bijua VM, Subrahmanyam C (2012) Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma. Appl Energy 95:87–92CrossRefGoogle Scholar
  21. 21.
    Kameda T, Inazu K, Hisamatsu Y, Takenaka N, Bandow H (2006) Isomer distribution of nitrotriphenylenes in airborne particles, diesel exhaust particles, and the productsof gas-phase radical-initiated nitration of triphenylene. Atmos Environ 40(40):7742–7751CrossRefGoogle Scholar
  22. 22.
    Chae JO (2003) Non-thermal plasma for diesel exhaust treatment. J Electrostat 57(3–4):251–262CrossRefGoogle Scholar
  23. 23.
    Michael J, Odic E, Zinola S, Lavy J (2012) Plasma assisted heterogeneous catalytic oxidation: HCCI diesel engine investigations. Appl Catal B 117–118:1–9Google Scholar
  24. 24.
    Chen YY, Cai YX, Li XH, Shi YX, Zheng Y (2015) Experimental study on regenerating fouled EGR cooler by NTPI technology. Int J Automot Technol 16(2):183–191CrossRefGoogle Scholar
  25. 25.
    Babaiea M, Davaric P, Talebizadehd P, Zaree F, Rahimzadehd H, Ristovskia Z, Browna R (2015) Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction. Chem Eng J 276:240–248CrossRefGoogle Scholar
  26. 26.
    Okubo M, Kuroki T, Yamamoto T, Miwa S (2003) Soot incineration of diesel particulate filter using honeycomb nonthermal plasma. SAE paper 2003-01-1886Google Scholar
  27. 27.
    Okubo M, Miyashita T, Kuroki T, Miwa S, Yamamoto T (2004) Regeneration of diesel particulate filter using nonthermal plasma without catalyst. IEEE Trans Ind Appl 40(6):1451–1458CrossRefGoogle Scholar
  28. 28.
    Okubo M, Kuroki T, Miyairi Y, Yamamoto T (2004) Low-temperature soot incineration of diesel particulate filter using remote nonthermal plasma induced by a pulsed barrier discharge. IEEE Trans Ind Appl 40(6):1504–1512CrossRefGoogle Scholar
  29. 29.
    Okubo M, Arita N, Kuroki T et al (2007) Carbon particulate matter incineration in diesel engine emissions using indirect nonthermal plasma processing. Thin Solid Films 515(9):4289–4295CrossRefGoogle Scholar
  30. 30.
    Okubo M, Arita N, Kuroki T, Yoshida K, Yamamoto T (2008) Total diesel emission control technology using ozone injection and plasma desorption. Plasma Chem Plasma Process 28(2):173–187CrossRefGoogle Scholar
  31. 31.
    Okubo M, Kuwahara T, Kanaka Y, Kuroki T (2010) Improvement of NOx reduction efficiency in diesel emission using nonthermal plasma—exhaust gas recirculation combined aftertreatment. IEEE Ind Appl Soc Ann Meet. doi: 10.1109/IAS.2010.5615918 Google Scholar
  32. 32.
    Fushimi C, Madokoro K, Yao S, Fujioka Y, Yamada K (2008) Influence of polarity and rise time of pulse voltage waveforms on diesel particulate matter removal using an uneven dielectric barrier discharge reactor. Plasma Chem Plasma Process 28:511–522CrossRefGoogle Scholar
  33. 33.
    Shuiliang YAO, Kodama A, Yamamoto S, Mine C, Fujioka Y, Fushimi C (2008) Application of a dielectric barrier discharge reactor for diesel PM removal. 11th international conference on electrostatic precipitation 677–680Google Scholar
  34. 34.
    Shi Y, Cai Y, Li X, Chen Y, Ding D, Tang W (2014) Meachnism and method of DPF regeneration by oxygen radical generaed by NTP technology. Int J Automot Technol 15:871–876CrossRefGoogle Scholar
  35. 35.
    Eliasson B, Kogelschatz U (1991) Nonequilibrium volume plasma chemical processing. IEEE Trans Plasma Sci 19(6):1063–1077CrossRefGoogle Scholar
  36. 36.
    Takaki K, Chang JS, Kostov KG (2004) Atmospheric pressure of nitrogen plasmas in a ferro-electric packed bed barrier discharge reactor. IEEE Trans Dielectr Electr Insul 11:481–490CrossRefGoogle Scholar
  37. 37.
    Talebizadeh P, Babaie M, Brown R, Rahimzadeh H, Ristovski Z, Arai M (2014) The role of non-thermal plasma technique in NOx treatment: a review. Renew Sustain Energy Rev 40:886–901CrossRefGoogle Scholar
  38. 38.
    Grundmann SM, Zahn RJ (2005) Treatment of soot by dielectric barrier discharges and ozone. Plasma Chem Plasma Process 25(5):455–466CrossRefGoogle Scholar
  39. 39.
    Debora F, Vito S (2008) Open issues in oxidative catalysis for diesel particulate abatement. Powder Technol 180:64–73CrossRefGoogle Scholar
  40. 40.
    Kuwahara T, Nishii S, Kuroki T, Okubo M (2013) Complete regeneration characteristics of diesel particulate filter using ozone injection. Appl Energy 111:652–656CrossRefGoogle Scholar
  41. 41.
    Murtagh MJ, Sherwood DL, Socha LS et al (1994) Development of a diesel particulate filter composition and its effect on thermal durability and filtration performance. SAE Technical Paper, 940235Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yunxi Shi
    • 1
    Email author
  • Yixi Cai
    • 1
  • Xiaohua Li
    • 1
  • Hui Xu
    • 1
  • Weijun Li
    • 1
  • Xiaoyu Pu
    • 1
  1. 1.School of Automotive and Traffic EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations