Plasma Chemistry and Plasma Processing

, Volume 36, Issue 1, pp 259–268 | Cite as

Why Target Immune Cells for Plasma Treatment of Cancer

  • Vandana Miller
  • Abraham Lin
  • Alexander Fridman
Original Paper


This paper addresses the challenge of using non-equilibrium plasma as a therapeutic approach for diseases of body systems not readily accessible to plasma-generated factors. The role of plasma stimulation of the immune system is discussed as a conceivable mechanism to deliver effects. This is especially important for treatment of cancers since the pathogenesis and progression of cancers are directly influenced by immune function. By optimizing plasma parameters to induce immunogenic cell death in tumors locally, it is possible to trigger specific, protective immune responses systemically. The observations from in vitro and in vivo investigations on this subject are reviewed here. An in depth understanding of the interaction between plasma components and the cells of the immune system may provide necessary information for use of plasmas in treatment of many systemic diseases. The clinical implications of treating cancers with non-equilibrium plasma are considered. The paper also identifies some hurdles that must be overcome before plasma immunotherapy becomes a clinical reality.


Immunogenic cell death (ICD) Cancer treatment Non-equilibrium plasma Immune stimulation Plasma immunotherapy 


  1. 1.
    Palumbo MO, et al (2013) Systemic cancer therapy: achievements and challenges that lie ahead. Front Pharmacol 4:1–9CrossRefGoogle Scholar
  2. 2.
    Makkouk A, Weiner GJ (2015) Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res 75(1):5–10CrossRefGoogle Scholar
  3. 3.
    Snook AE et al (2008) Guanylyl cyclase c-induced immunotherapeutic responses opposing tumor metastases without autoimmunity. J Natl Cancer Inst 100(13):950–961CrossRefGoogle Scholar
  4. 4.
    Witek M et al (2014) Tumor radiation therapy creates therapeutic vaccine responses to the colorectal cancer antigen GUCY2C. Int J Radiat Oncol* Biol* Phys 88(5):1188–1195CrossRefGoogle Scholar
  5. 5.
    Zitvogel L et al (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8(1):59–73CrossRefGoogle Scholar
  6. 6.
    Sun CC et al (2005) Rankings and symptom assessments of side effects from chemotherapy: insights from experienced patients with ovarian cancer. Support Care Cancer 13(4):219–227CrossRefGoogle Scholar
  7. 7.
    Bentzen SM (2006) Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6(9):702–713CrossRefGoogle Scholar
  8. 8.
    Yasuda H (2008) Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide 19(2):205–216CrossRefGoogle Scholar
  9. 9.
    Fridman G et al (2007) Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma Process 27(2):163–176CrossRefGoogle Scholar
  10. 10.
    Kim C-H et al (2010) Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. J Biotechnol 150(4):530–538CrossRefGoogle Scholar
  11. 11.
    Vandamme M et al (2010) Antitumor effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Process Polym 7(3–4):264–273CrossRefGoogle Scholar
  12. 12.
    Keidar M et al (2011) Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer 105(9):1295–1301CrossRefGoogle Scholar
  13. 13.
    Volotskova O, et al (2012) Targeting the cancer cell cycle by cold atmospheric plasma. Sci Rep 2:1–10CrossRefGoogle Scholar
  14. 14.
    Emmert S et al (2013) Clinical plasma medicine—position and perspectives in 2012: paper of consent, result of the workshop “Clinical Concepts in Plasma Medicine”, Greifswald April 28th, 2012. Clin Plasma Med 1(1):3–4CrossRefGoogle Scholar
  15. 15.
    Utsumi F et al (2013) Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One 8(12):e81576CrossRefGoogle Scholar
  16. 16.
    Ma Y et al (2014) Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways. PLoS One 9(4):e91947CrossRefGoogle Scholar
  17. 17.
    Metelmann H-R et al (2015) Head and neck cancer treatment and physical plasma. Clin Plasma Med 3(1):8CrossRefGoogle Scholar
  18. 18.
    Brullé L et al (2012) Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model. PLoS One 7(12):e52653CrossRefGoogle Scholar
  19. 19.
    Dobrynin D et al (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11(11):115020CrossRefGoogle Scholar
  20. 20.
    Kalghatgi S et al (2011) Effects of non-thermal plasma on mammalian cells. PLoS One 6(1):e16270CrossRefGoogle Scholar
  21. 21.
    Lin A et al (2015) Non-equilibrium dielectric barrier discharge treatment of mesenchymal stem cells: charges and reactive oxygen species play the major role in cell death. Plasma Process Polym. doi: 10.1002/ppap.201400232 Google Scholar
  22. 22.
    Babaeva NY, Kushner MJ (2013) Reactive fluxes delivered by dielectric barrier discharge filaments to slightly wounded skin. J Phys D Appl Phys 46(2):025401CrossRefGoogle Scholar
  23. 23.
    Graves DB (2014) Reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Process Polym 11(12):1120–1127CrossRefGoogle Scholar
  24. 24.
    Fridman A (2008) Plasma chemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. 25.
    Lu X, Laroussi M, Puech V (2012) On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci Technol 21(3):034005CrossRefGoogle Scholar
  26. 26.
    Kubota Y, Ichiki R, Hara T, Yamaguchi N, Takemura Y (2009) Spectroscopic analysis of nitrogen atmospheric plasma jet. J Plasma Fusion Res Ser 8:740–743Google Scholar
  27. 27.
    Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489CrossRefGoogle Scholar
  28. 28.
    Sun C et al (2015) Reactive oxygen species involved in CT26 immunogenic cell death induced by Clostridium difficile toxin B. Immunol Lett 164(2):65–71CrossRefGoogle Scholar
  29. 29.
    Kroemer G et al (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72CrossRefGoogle Scholar
  30. 30.
    Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21(1):807–839CrossRefGoogle Scholar
  31. 31.
    Fridman WH et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306CrossRefGoogle Scholar
  32. 32.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
  33. 33.
    Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61CrossRefGoogle Scholar
  34. 34.
    de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37CrossRefGoogle Scholar
  35. 35.
    Partecke LI et al (2012) Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer 12(1):473CrossRefGoogle Scholar
  36. 36.
    Schlegel J, Köritzer J, Boxhammer V (2013) Plasma in cancer treatment. Clin Plasma Med 1(2):2–7CrossRefGoogle Scholar
  37. 37.
    Walk RM et al (2013) Cold atmospheric plasma for the ablative treatment of neuroblastoma. J Pediatr Surg 48(1):67–73CrossRefGoogle Scholar
  38. 38.
    Crittenden M et al (2015) Current clinical trials testing combinations of immunotherapy and radiation. Semin Radiat Oncol 25(1):54–64CrossRefGoogle Scholar
  39. 39.
    Kohoutova D et al (2015) Esophageal neoplasia arising from subsquamous buried glands after an apparently successful photodynamic therapy or radiofrequency ablation for Barrett’s associated neoplasia. Scand J Gastroenterol 50(11):1–7CrossRefGoogle Scholar
  40. 40.
    Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6(7):535–545CrossRefGoogle Scholar
  41. 41.
    Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: part three—photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagn Photodyn Ther 2(2):91–106CrossRefGoogle Scholar
  42. 42.
    Apetoh L et al (2007) Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059CrossRefGoogle Scholar
  43. 43.
    Manda K, et al (2012) Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells. Front Oncol 2:1–9CrossRefGoogle Scholar
  44. 44.
    Kalbasi A et al (2013) Radiation and immunotherapy: a synergistic combination. J Clin Investig 123(7):2756CrossRefGoogle Scholar
  45. 45.
    Miller V et al (2014) Plasma stimulation of migration of macrophages. Plasma Process Polym 11(12):1193–1197CrossRefGoogle Scholar
  46. 46.
    Lin A et al (2015) Uniform nanosecond pulsed dielectric barrier discharge plasma enhances anti-tumor effects by induction of immunogenic cell death in tumors and stimulation of macrophages. In: Plasma processes and polymers, Submitted for publication 2015(special issue “Plasma and Cancers II”)Google Scholar
  47. 47.
    Miller V (2015) Non-thermal plasma as an immunomodulator. In: 5th International symposium on plasma biosciences. Jeju Korea, p 140Google Scholar
  48. 48.
    Kaushik NK et al (2015) Cytotoxic macrophage released tumor necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation. J Phys D Appl Phys (submitted)Google Scholar
  49. 49.
    Miller V, Lin A, Fridman A (2015) Plasma activation of the immune system- new approach for treating cancers. In: 22nd International symposium on plasma chemistry. Antwerp, BelgiumGoogle Scholar
  50. 50.
    Lin A, et al (2015) Nanosecond pulsed DBD for plasma onco-immunotherapy. In: 22nd International symposium on plasma chemistry. Antwerp, BelgiumGoogle Scholar
  51. 51.
    Garg AD et al (2010) Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta (BBA) Rev Cancer 1805(1):53–71CrossRefGoogle Scholar
  52. 52.
    Krysko DV et al (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12(12):860–875CrossRefGoogle Scholar
  53. 53.
    Cruz CM et al (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282(5):2871–2879CrossRefGoogle Scholar
  54. 54.
    Vitiello L et al (2012) Immunoregulation through extracellular nucleotides. Blood 120(3):511–518CrossRefGoogle Scholar
  55. 55.
    Zhang X, Mosser D (2008) Macrophage activation by endogenous danger signals. J Pathol 214(2):161–178CrossRefGoogle Scholar
  56. 56.
    Tesniere A et al (2008) Immunogenic cancer cell death: a key-lock paradigm. Curr Opin Immunol 20(5):504–511CrossRefGoogle Scholar
  57. 57.
    Tesniere A et al (2008) Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 15(1):3–12CrossRefGoogle Scholar
  58. 58.
    Panaretakis T et al (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28(5):578–590CrossRefGoogle Scholar
  59. 59.
    Basu S et al (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int Immunol 12(11):1539–1546CrossRefGoogle Scholar
  60. 60.
    Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2(3):185–194CrossRefGoogle Scholar
  61. 61.
    Garg AD et al (2012) A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 31(5):1062–1079CrossRefGoogle Scholar
  62. 62.
    Unanue ER (1984) Antigen-presenting function of the macrophage. Annu Rev Immunol 2(1):395–428CrossRefGoogle Scholar
  63. 63.
    Guermonprez P et al (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20(1):621–667CrossRefGoogle Scholar
  64. 64.
    Klebanoff CA et al (2005) Central memory self/tumor-reactive CD8 + T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102(27):9571–9576CrossRefGoogle Scholar
  65. 65.
    Koks CA et al (2015) Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer 136(5):E313–E325CrossRefGoogle Scholar
  66. 66.
    Keidar M et al (2013) Cold atmospheric plasma in cancer therapya. Phys Plasmas (1994-present) 20(5):057101CrossRefGoogle Scholar
  67. 67.
    Panngom K et al (2013) Differential responses of cancer cell lines to non-thermal plasma from dielectric barrier discharge. Curr Appl Phys 13:S6–S11CrossRefGoogle Scholar
  68. 68.
    Miller V, et al (2015) Plasma stimulation of immune cell function- plasma initiates, biology propagates. In: European cooperation in science and technology. Istanbul, TurkeyGoogle Scholar
  69. 69.
    Whiteside T (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912CrossRefGoogle Scholar
  70. 70.
    Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267CrossRefGoogle Scholar
  71. 71.
    Knutson K, Disis M (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54(8):721–728CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vandana Miller
    • 1
  • Abraham Lin
    • 1
  • Alexander Fridman
    • 1
  1. 1.AJ Drexel Plasma InstituteDrexel UniversityPhiladelphiaUSA

Personalised recommendations