Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Plasma Nitrogen Oxides Synthesis in a Milli-Scale Gliding Arc Reactor: Investigating the Electrical and Process Parameters


Nitrogen fixed in the form of nitrogen oxides is essential to produce fertilizers and many other chemical products, which is vital to sustain life. The performance of a milli-scale gliding arc reactor operated under atmospheric pressure has been studied for nitrogen oxides synthesis. In this work, the electrical and process parameters of the gliding arc reactor, such as frequency, pulse width, amplitude and feed ratio were investigated respectively. The experiments were performed at 1 L/min in a gliding arc discharge regime. The highest concentration of NOx was found to be ~1 % at energy consumption of 10 kWh/kg of NOx. Increase in frequency, pulse width and amplitude resulted in an increased specific energy input and NOx concentration. The feed ratio (N2/O2) affected the amount of NO and NO2 produced, which gives possibility to independently obtain the desired ratio of NO/NO2 by tuning the electrical and process parameters.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    UNEP and WHRC, UNEP W (2007) Reactive nitrogen in the environment: too much or too little of a good thing. United Nations Environment Programme, Paris

  2. 2.

    Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71. doi:10.2307/4315217

  3. 3.

    Cherkasov N, Ibhadon AO, Fitzpatrick P (2015) A review of the existing and alternative methods for greener nitrogen fixation. Chem Eng Process Process Intensif 90:24–33. doi:10.1016/j.cep.2015.02.004

  4. 4.

    Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. doi:10.1126/science.1136674

  5. 5.

    Patil BS, Wang Q, Hessel V, Lang J (2015) Plasma N2-fixation: 1900–2014. Catal Today. doi:10.1016/j.cattod.2015.05.005

  6. 6.

    Appl M (2012) Ammonia, 2. Production processes. Ullmann’s Encycl Ind Chem. doi:10.1002/14356007.o02

  7. 7.

    Tanabe Y, Nishibayashi Y (2013) Developing more sustainable processes for ammonia synthesis. Coord Chem Rev 257:2551–2564. doi:10.1016/j.ccr.2013.02.010

  8. 8.

    Schrock RR (2006) Reduction of dinitrogen. Proc Natl Acad Sci USA 103:17087. doi:10.1073/pnas.0603633103

  9. 9.

    Appl M (1997) The Haber-Bosch heritage: the ammonia production technology. In: Proceedings of the 50th anniversary IFA technical conference 1–25

  10. 10.

    Cowling E, Galloway J, Furiness C et al (2001) Optimizing nitrogen management in food and energy production and environmental protection: summary statement from the Second International Nitrogen Conference. Sci World J 1:1–9. doi:10.1100/tsw.2001.481

  11. 11.

    Erisman JW, Sutton MA et al (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639

  12. 12.

    International Energy Agency-IEA (2013) Technology roadmap: energy and GHG reductions in the chemical industry via catalytic processes.

  13. 13.

    Samukawa S, Hori M, Rauf S et al (2012) The 2012 plasma roadmap. J Phys D Appl Phys 45:253001. doi:10.1088/0022-3727/45/25/253001

  14. 14.

    Creative Energy (2008) European roadmap for process intensification.

  15. 15.

    Hessel V, Cravotto G, Fitzpatrick P et al (2013) Industrial applications of plasma, microwave and ultrasound techniques: nitrogen-fixation and hydrogenation reactions. Chem Eng Process Process Intensif 71:19–30. doi:10.1016/j.cep.2013.02.002

  16. 16.

    Hessel V, Anastasopoulou A, Wang Q et al (2013) Energy, catalyst and reactor considerations for (near)-industrial plasma processing and learning for nitrogen-fixation reactions. Catal Today 211:9–28. doi:10.1016/j.cattod.2013.04.005

  17. 17.

    Anastasopoulou A, Wang Q, Hessel V, Lang J (2014) Energy considerations for plasma-assisted N-fixation reactions. Processes 2:694–710. doi:10.3390/pr2040694

  18. 18.

    Li L, Qu L, Cheng J et al (2009) Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts. Appl Catal B Environ 88:224–231. doi:10.1016/j.apcatb.2008.09.032

  19. 19.

    Malik MA, Jiang C, Heller R et al (2016) Ozone-free nitric oxide production using an atmospheric pressure surface discharge: a way to minimize nitrogen dioxide co-production. Chem Eng J 283:631–638. doi:10.1016/j.cej.2015.07.092

  20. 20.

    Spasova B, Tiemann D, O’Connell M et al (2014) Synthesis gas production from methane and propane in a miniaturized GlidArc® reformer. Int J Hydrogen Energy 39:12657–12666. doi:10.1016/j.ijhydene.2014.06.065

  21. 21.

    Tu X, Whitehead JC (2014) Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: co-generation of syngas and carbon nanomaterials. Int J Hydrogen Energy 39:9658–9669. doi:10.1016/j.ijhydene.2014.04.073

  22. 22.

    Indarto A, Yang DR, Choi JW et al (2007) Gliding arc plasma processing of CO2 conversion. J Hazard Mater 146:309–315. doi:10.1016/j.jhazmat.2006.12.023

  23. 23.

    Pornmai K, Jindanin A, Sekiguchi H, Chavadej S (2012) Synthesis gas production from CO2-containing natural gas by combined steam reforming and partial oxidation in an AC gliding arc discharge. Plasma Chem Plasma Process 32:723–742. doi:10.1007/s11090-012-9371-2

  24. 24.

    Krawczyk K, Ulejczyk B (2003) Decomposition of chloromethanes in gliding discharges. Plasma Chem Plasma Process 23:265–281. doi:10.1023/A:1022916018245

  25. 25.

    Dalaine V, Cormier JM, Lefaucheux P (1998) A gliding discharge applied to H2S destruction. J Appl Phys 83:2435–2441. doi:10.1002/chem.201304722

  26. 26.

    Krawczyk K, Mlotek M (2001) Combined plasma-catalytic processing of nitrous oxide. Appl Catal B Environ 30:233–245. doi:10.1016/S0926-3373(00)00243-5

  27. 27.

    Fridman A, Nester S, Kennedy LA et al (1999) Gliding arc gas discharge. Prog Energ Combust 25:211–231

  28. 28.

    Czemichowski A (1994) Gliding arc: applications to engineering and environment control. Pure Appl Chem 66:1301–1310

  29. 29.

    Kolev S, Bogaerts A (2015) A 2D model for a gliding arc discharge. Plasma Sour Sci Technol 24:015025. doi:10.1088/0963-0252/24/1/015025

  30. 30.

    Burlica R, Kirkpatrick MJ, Locke BR (2006) Formation of reactive species in gliding arc discharges with liquid water. J Electrostat 64:35–43. doi:10.1016/j.elstat.2004.12.007

  31. 31.

    Cormier JM, Aubry O, Khacef A (2008) Degradation of organics compounds and production of activated species in dielectric barrier discharges and glidarc reactors. NATO Secur Through Sci Ser A Chem Biol. doi:10.1007/978-1-4020-8439-3_10

  32. 32.

    Czekalska Z (2010) Gases conversion in low temperature plasma. Arch combust 30(4):337–346

  33. 33.

    Bo Z, Yan J, Li X et al (2009) Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds. J Hazard Mater 166:1210–1216. doi:10.1016/j.jhazmat.2008.12.030

  34. 34.

    Spasova B, Kolb G, Hessel V (2013) Miniaturized GlidArc® reformer for conversion of methane and propane to synthesis gas. In: Proceedings of th 21st international symposium plasma chemistry (ISPC 21) Sunday 4 August–Friday 9 August 2013 Cairns Convention Centre, Queensland, pp 4–7

  35. 35.

    Rueangjitt N, Sreethawong T, Chavadej S, Sekiguchi H (2009) Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: effects of input power, reactor thickness, and catalyst existence. Chem Eng J 155:874–880. doi:10.1016/j.cej.2009.10.009

  36. 36.

    Sreethawong T, Thakonpatthanakun P, Chavadej S (2007) Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system. Int J Hydrogen Energy 32:1067–1079. doi:10.1016/j.ijhydene.2006.07.013

  37. 37.

    Indarto A, Choi JW, Lee H, Song HK (2006) Effect of additive gases on methane conversion using gliding arc discharge. Energy 31:2650–2659. doi:10.1016/

  38. 38.

    Amouroux J, Cavadias S et al (1979) Réacteur de synthèse et de trempe dans un plasma hors d’équilibre : application à la synthèse des oxydes d’azote. Rev Phys Appl 14:969–976

  39. 39.

    Polak LS, Shchipachev VS (1965) In: Polak LS (ed) Kinetics and thermodynamics of chemical reactions in low temperature plasma. Nauka (Science), Moscow, pp 151–166

  40. 40.

    Fridman A (2008) Plasma chemistry. Cambridge University Press, New York

  41. 41.

    Mutel B, Dessaux O, Goudmand P (1984) Energy cost improvement of the nitrogen oxides synthesis in a low pressure plasma. Rev Phys Appl 19:461–464

Download references


This research is kindly funded by the EU project MAPSYN: Microwave, Acoustic and Plasma SYNtheses, under the Grant Agreement No. CP-IP 309376 of the European Community’s Seventh Framework Program. Authors would like to thank Technische Universität Darmstadt, Deutsche Forschungsgemeinschaft (DFG), Germany and Fraunhofer ICT-IMM Mainz, Germany for lending the milli-scale gliding arc reactor. Authors would also like to thank their technical support team in getting the milli-scale plasma reactor set-up working, especially to C. P. M. Buijs, E. P. J. M. van Herk, M. E. Coolen-Kuppens, P. J. L. Lipman, P. F. M. Aendenroomer and Paul Beijer.

Author information

Correspondence to Q. Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 133 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patil, B.S., Rovira Palau, J., Hessel, V. et al. Plasma Nitrogen Oxides Synthesis in a Milli-Scale Gliding Arc Reactor: Investigating the Electrical and Process Parameters. Plasma Chem Plasma Process 36, 241–257 (2016).

Download citation


  • Milli-scale gliding arc reactor
  • Plasma NOx synthesis
  • Specific energy input
  • Nitrogen fixation
  • Energy efficiency