Plasma Chemistry and Plasma Processing

, Volume 36, Issue 2, pp 451–469 | Cite as

Improving Plasma Regeneration Conditions of Pt–Sn/Al2O3 in Naphtha Catalytic Reforming Process Using Atmospheric DBD Plasma System

Original Paper
  • 258 Downloads

Abstract

The catalytic naphtha reforming is one of the largest processes of petroleum industry that is used to rebuild the low-octane hydrocarbons in the naphtha to more valuable high-octane gasoline called reformate without changing the boiling point range. An atmospheric pressure pin to plate dielectric barrier discharge (DBD) plasma was used to remove carbonaceous contaminant from the coked Pt–Sn/Al2O3 catalysts during the naphtha reforming process. The effects of treatment time and flow ratios of O2/Ar and O2/He on the carbon content of the coked catalysts were investigated. The produced radicals and active species of the plasma process were identified by optical emission spectroscopy. To confirm removing the coke from the catalyst, thermal gravimetric/differential thermal analysis and temperature programmed oxidation analysis were done. Effects of treatment time and flow ratios of O2/Ar and O2/He on the carbon content of the coked catalysts were investigated by applying elemental analysis. The results of X-ray diffraction, X-ray fluorescence, Brunauer–Emmett–Teller, and CO adsorption showed that the structure and specifications of regenerated catalysts remained without significant changes during the plasma treating. The catalyst performance test revealed that DBD plasma regenerated catalysts increased the aromatic content of the feed as well as the fresh catalysts. The results showed that the plasma treatment method for regeneration of Pt–Sn/Al2O3 can be applied at lower temperature and pressure relative to the thermal regeneration method.

Graphical Abstract

Keywords

Catalyst regeneration Pt–Sn/Al2O3 catalyst Plasma Pin to plate dielectric barrier discharge Naphtha reforming 

References

  1. 1.
    Rodríguez MA, Ancheyta J (2011) Detailed description of kinetic and reactor modeling for naphtha catalytic reforming. Fuel 90(12):3492–3508CrossRefGoogle Scholar
  2. 2.
    Rahimpour MR, Iranshahi D, Pourazadi E, Bahmanpour AM (2012) Boosting the gasoline octane number in thermally coupled naphtha reforming heat exchanger reactor using de optimization technique. Fuel 97:109–118CrossRefGoogle Scholar
  3. 3.
    Al-Jalal AM, Khan MA (2010) Optical emission and raman spectroscopy studies of reactivity of low-pressure glow discharges in Ar–O2 and He–O2 gas mixtures with coked catalysts. Plasma Chem Plasma Process 30(1):173–182CrossRefGoogle Scholar
  4. 4.
    Pieck CL, Vera CR, Querini CA, Parera JM (2005) Differences in coke burning-off from Pt–Sn/Al2O3 catalyst with oxygen or ozone. Appl Catal A Gen 278(2):173–180CrossRefGoogle Scholar
  5. 5.
    Shiriyazdanov R (2011) Regeneration of zeolite-containing catalysts of alkylation of isobutane with the butane-butene faction in supercritical carbon dioxide. Rus J Phys Chem B 5(7):1080–1083CrossRefGoogle Scholar
  6. 6.
    Aguado J, Serrano D, Escola J, Briones L (2013) Deactivation and regeneration of a Ni supported hierarchical beta zeolite catalyst used in the hydroreforming of the oil produced by LDPE thermal cracking. Fuel 109:679–686CrossRefGoogle Scholar
  7. 7.
    Vicerich MA, Oportus M, Benitez VM, Reyes P, Pieck CL (2014) Influence of time and temperature on the regeneration of PtReIn/Al2O3 naphtha reforming catalysts. Catal Lett 144(7):1178–1187CrossRefGoogle Scholar
  8. 8.
    Khan M, Al-Jalal A (2004) Enhanced decoking of a coked zeolite catalyst using a glow discharge in Ar–O2 gas mixture. Appl Catal A Gen 272(1):141–149CrossRefGoogle Scholar
  9. 9.
    Khan M, Al-Jalal A, Bakhtiari I (2003) ‘Decoking’ of a ‘coked’ zeolite catalyst in a glow discharge. Anal Bioanal Chem 377(1):89–96CrossRefGoogle Scholar
  10. 10.
    Vradman L, Herskowitz M, Korin E, Wisniak J (2001) Regeneration of poisoned nickel catalyst by supercritical CO2 extraction. Ind Eng Chem Res 40(7):1589–1590CrossRefGoogle Scholar
  11. 11.
    Ginosar DM, Thompson DN, Burch KC (2006) Sustainable solid catalyst alkylation of commercial olefins by regeneration with supercritical isobutane. Ind Eng Chem Res 45(2):567–577CrossRefGoogle Scholar
  12. 12.
    Gaydamaka S, Timofeev V, Lemenovskii D, Kardashev S, Parenago O, Bagratashvili V, Sergienko S, Brusova G, Lunin V (2013) The possibility of supercritical fluid regeneration for Pt–Re/γ-Al2O3 industrial reforming catalyst in O3/CO2 mixtures. Catal Ind 5(3):216–222CrossRefGoogle Scholar
  13. 13.
    Gaydamaka S, Timofeev V, Lemenovskii D, Kardashev S, Parenago O, Bagratashvili V, Sergienko S, Brusova G, Lunin V (2013) The possibility of supercritical fluid regeneration for Pt–Re/γ-Al2O3 industrial reforming catalyst in O3/CO2 mixtures. Catal Ind 5(3):216–222CrossRefGoogle Scholar
  14. 14.
    Jõgi I, Stamate E, Irimiea C, Schmidt M, Brandenburg R, Hołub M, Bonisławski M, Jakubowski T, Kääriäinen M-L, Cameron DC (2014) Comparison of direct and indirect plasma oxidation of NO combined with oxidation by catalyst. Fuel 144:137–144CrossRefGoogle Scholar
  15. 15.
    Kasinathan P, Park S, Choi WC, Hwang YK, Chang J-S, Park Y-K (2014) Plasma-enhanced methane direct conversion over particle-size adjusted MOx/Al2O3 (M = Ti and Mg) catalysts. Plasma Chem Plasma Process 34(6):1317–1330CrossRefGoogle Scholar
  16. 16.
    Xiao G, Xu W, Wu R, Ni M, Du C, Gao X, Luo Z, Cen K (2014) Non-thermal plasmas for VOCs abatement. Plasma Chem Plasma Process 34(5):1033–1065CrossRefGoogle Scholar
  17. 17.
    Hao H, Wu BS, Yang J, Guo Q, Yang Y, Li YW (2014) Non-thermal plasma enhanced heavy oil upgrading. Fuel 149:162–173CrossRefGoogle Scholar
  18. 18.
    Ge W, Duan X, Li Y, Wang B (2015) Plasma—catalyst synergy during methanol steam reforming in dielectric barrier discharge micro-plasma reactors for hydrogen production. Plasma Chem Plasma Process 35(1):187–199CrossRefGoogle Scholar
  19. 19.
    Lee DH, Kim H, Song Y-H, Kim K-T (2014) Plasma burner for active regeneration of diesel particulate filter. Plasma Chem Plasma Process 34(1):159–173CrossRefGoogle Scholar
  20. 20.
    Yang F, Li YZ, Chu W, Li C, Tong DG (2014) Mesoporous Co–B–N–H nanowires: superior catalysts for decomposition of hydrous hydrazine to generate hydrogen. Catal Sci Technol 4(9):3168–3179CrossRefGoogle Scholar
  21. 21.
    Tong DG, Chu W, Wu P, Zhang L (2012) Honeycomb-like Co–B amorphous alloy catalysts assembled by a solution plasma process show enhanced catalytic hydrolysis activity for hydrogen generation. RSC Adv 2(6):2369–2376CrossRefGoogle Scholar
  22. 22.
    Futamura S, Zhang A, Einaga H, Kabashima H (2002) Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catal Today 72(3):259–265CrossRefGoogle Scholar
  23. 23.
    Vissokov G, Panayotova M (2002) Plasma-chemical synthesis and regeneration of catalysts for reforming natural gas. Catal Today 72(3):213–221CrossRefGoogle Scholar
  24. 24.
    Dooley KM, Ghonasgi D, Knopf FC, Gambrell RP (1990) Supercritical CO2-cosolvent extraction of contaminated soils and sediments. Environ Progress 9(4):197–203CrossRefGoogle Scholar
  25. 25.
    Lokteva ES, Lazhko AE, Golubina EV, Timofeev VV, Naumkin AV, Yagodovskaya TV, Gaidamaka SN, Lunin VV (2011) Regeneration of Pd/TiO2 catalyst deactivated in reductive CCl4 transformations by the treatment with supercritical CO2 ozone in supercritical CO2 or oxygen plasma. J Supercrit Fluids 58(2):263–271CrossRefGoogle Scholar
  26. 26.
    Simescu-Lazar F, Meille V, Pallier S, Chaînet E, De Bellefon C (2012) Regeneration of deactivated catalysts coated on foam and monolith: example of Pd/C for nitrobenzene hydrogenation. Appl Catal A Gen 453:28–33CrossRefGoogle Scholar
  27. 27.
    Wright BW, Wright CW, Fruchter JS (1989) Supercritical fluid extraction of coal tar-contaminated soil samples. Energy Fuels 3(4):474–480CrossRefGoogle Scholar
  28. 28.
    Vissokov GP (2002) Plasma-chemical synthesis and regeneration of catalysts for CH4 steam conversion. Plasma Sci Technol 4(6):1551CrossRefGoogle Scholar
  29. 29.
    Kim H, Tsubota S, Date M, Ogata A, Futamura S (2007) Catalyst regeneration and activity enhancement of Au/TiO2 by atmospheric pressure nonthermal plasma. Appl Catal A Gen 329:93–98CrossRefGoogle Scholar
  30. 30.
    Mok Y, Jwa E, Hyun Y (2013) Regeneration of C 4 H 10 dry reforming catalyst by nonthermal plasma. J Energy Chem 22(3):394–402CrossRefGoogle Scholar
  31. 31.
    Baghalha M, Mohammadi M, Ghorbanpour A (2010) Coke deposition mechanism on the pores of a commercial Pt–Re/γ-Al2O3 naphtha reforming catalyst. Fuel Process Technol 91(7):714–722CrossRefGoogle Scholar
  32. 32.
    Son IH, Lee SJ, Song IY, Jeon WS, Jung I, Yun DJ, Jeong D-W, Shim J-O, Jang W-J, Roh H-S (2014) Study on coke formation over Ni/γ-Al2O3Co–Ni/γ-Al2O3 and Mg–Co–Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane. Fuel 136:194–200CrossRefGoogle Scholar
  33. 33.
    Li Q, Sui Z, Zhou X, Zhu Y, Zhou J, Chen D (2011) Coke formation on Pt–Sn/Al2O3 catalyst in propane dehydrogenation: coke characterization and kinetic study. Top Catal 54(13–15):888–896CrossRefGoogle Scholar
  34. 34.
    Guo X, Zheng Y, Zhang B, Chen J (2009) Analysis of coke precursor on catalyst and study on regeneration of catalyst in upgrading of bio-oil. Biomass Bioenerg 33(10):1469–1473CrossRefGoogle Scholar
  35. 35.
    Contreras-Andrade I, Vázquez-Zavala A, Ts Viveros (2009) Influence of the synthesis method on the catalytic behavior of Pt and PtSn/Al2O3 reforming catalyst. Energy Fuels 23(8):3835–3841CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Chu W, Cao W, Luo C, Wen X, Zhou K (2000) A plasma-activated Ni/α-Al2O3 catalyst for the conversion of CH4 to syngas. Plasma Chem Plasma Process 20(1):137–144CrossRefGoogle Scholar
  37. 37.
    Arteaga GJ, Anderson JA, Becker SM, Rochester CH (1999) Influence of oxychlorination treatment on the surface and bulk properties of a Pt–Sn/Al2O3 catalyst. J Mol Catal A Chem 145(1):183–201CrossRefGoogle Scholar
  38. 38.
    Gomez R, Bertin V, Bosch P, Lopez T, Del Angel P, Schifter I (1993) Pt–Sn/Al2O3 sol–gel catalysts: metallic phase characterization. Catal Lett 21(3–4):309–320CrossRefGoogle Scholar
  39. 39.
    Kaidanovych Z, Kalishyn Y, Strizhak P (2013) Deposition of monodisperse platinum nanoparticles of controlled size on different supports. Adv Nanopart 2:32–38CrossRefGoogle Scholar
  40. 40.
    Zhu X, P-p Huo, Y-p Zhang, C-j Liu (2006) Characterization of argon glow discharge plasma reduced Pt/Al2O3 catalyst. Ind Eng Chem Res 45(25):8604–8609CrossRefGoogle Scholar
  41. 41.
    Tong DG, Tang DM, Chu W, Gu GF, Wu P (2013) Monodisperse Ni 3 Fe single-crystalline nanospheres as a highly efficient catalyst for the complete conversion of hydrous hydrazine to hydrogen at room temperature. J Mater Chem A 1(21):6425–6432CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Zhou Y, Wan L, Xue M, Duan Y, Liu X (2011) Effect of magnesium addition on catalytic performance of PtSnK/γ-Al2O3 catalyst for isobutane dehydrogenation. Fuel Process Technol 92(8):1632–1638CrossRefGoogle Scholar
  43. 43.
    Zhang Y, Zhou Y, Shi J, Sheng X, Duan Y, Zhou S, Zhang Z (2012) Effect of zinc addition on catalytic properties of PtSnK/γ-Al2O3 catalyst for isobutane dehydrogenation. Fuel Process Technol 96:220–227CrossRefGoogle Scholar
  44. 44.
    Torres-Mancera P, Rayo P, Ancheyta J, Marroquín G, Centeno G, Alonso F (2014) Characterization of spent and regenerated catalysts recovered from a residue hydrotreating bench-scale reactor. Fuel 149:143–148CrossRefGoogle Scholar
  45. 45.
    Khan M, Al-Jalal A (2004) Enhanced decoking of a coked zeolite catalyst using a glow discharge in Ar–O2 gas mixture. Appl Catal A Gen 272(1):141–149CrossRefGoogle Scholar
  46. 46.
    Jwa E, Hyun YJ, Lim TH, Lee SB, Mok YS (2012) Regeneration of C4H10 dry reforming catalyst by using nonthermal plasma. In: 2012 international symposium on plasmas for catalysis and energy materials, p 32Google Scholar
  47. 47.
    Guo Q, With P, Liu Y, Gläser R, C-j Liu (2013) Carbon template removal by dielectric-barrier discharge plasma for the preparation of zirconia. Catal Today 211:156–161CrossRefGoogle Scholar
  48. 48.
    Li S-Z, Huang W-T, Zhang J, Wang D (2009) Optical diagnosis of an argon/oxygen needle plasma generated at atmospheric pressure. Appl Phys Lett 94(11):111501CrossRefGoogle Scholar
  49. 49.
    Kennedy LA, Fridman AA (2004) Plasma physics and engineering. Taylor & Francis Group, LondonGoogle Scholar
  50. 50.
    Sneddon J (2002) Advances in atomic spectroscopy, vol 7. Elsevier, AmsterdamGoogle Scholar
  51. 51.
    Afonso JC, Aranda DA, Schmal M, Frety R (1995) Importance of pretreatment on regeneration of a Pt-Sn/Al2O3 catalyst. Fuel Process Technol 42(1):3–17CrossRefGoogle Scholar
  52. 52.
    Coleto I, Roldán R, Jiménez-Sanchidrián C, Gómez JP, Romero-Salguero FJ (2007) Transformation of α-olefins over Pt–M (M = Re, Sn, Ge) supported chlorinated alumina. Fuel 86(7):1000–1007CrossRefGoogle Scholar
  53. 53.
    Boyadjian C, Ağıral A, Gardeniers J, Lefferts L, Seshan K (2011) Oxidative conversion of hexane to olefins-influence of plasma and catalyst on reaction pathways. Plasma Chem Plasma Process 31(2):291–306CrossRefGoogle Scholar
  54. 54.
    Baghalha M, Mohammadi M, Ghorbanpour A (2010) Coke deposition mechanism on the pores of a commercial Pt–Re/γ-Al2O3 naphtha reforming catalyst. Fuel Process Technol 91(7):714–722CrossRefGoogle Scholar
  55. 55.
    Tong DG, Chu W, Wu P, Gu GF, Zhang L (2013) Mesoporous multiwalled carbon nanotubes as supports for monodispersed iron–boron catalysts: improved hydrogen generation from hydrous hydrazine decomposition. J Mater Chem A 1(2):358–366CrossRefGoogle Scholar
  56. 56.
    Zhang Y, Zhou Y, Wan L, Xue M, Duan Y, Liu X (2011) Effect of magnesium addition on catalytic performance of PtSnK/γ-Al2O3 catalyst for isobutane dehydrogenation. Fuel Process Technol 92(8):1632–1638CrossRefGoogle Scholar
  57. 57.
    González-Marcos M, Iñarra B, Guil J, Gutiérrez-Ortiz M (2004) Use of test reactions for the characterisation of bimetallic Pt-Sn/Al2O3 catalysts. Appl Catal A Gen 273(1):259–268CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Neda HafezKhiabani
    • 1
  • Sohrab Fathi
    • 2
  • Babak Shokri
    • 1
    • 3
  1. 1.Laser-Plasma Research InstituteShahid Beheshti University G.C.Evin, TehranIran
  2. 2.Department of EnergyKermanshah University of TechnologyKermanshahIran
  3. 3.Department of PhysicsShahid Beheshti University G.C.Evin, TehranIran

Personalised recommendations