Plasma Chemistry and Plasma Processing

, Volume 36, Issue 1, pp 73–84 | Cite as

Nonthermal Plasma Synthesis of Nanocrystals: Fundamentals, Applications, and Future Research Needs

Review Article

Abstract

Nonthermal plasma synthesis has emerged as a viable alternative to nanocrystal synthesis in the liquid phase or by other gas phase based methods. The nonequilibrium environment containing free charge carriers enables the synthesis of nanocrystals with excellent crystallinity and narrow size distributions. This paper reviews the fundamental mechanisms involved in the synthesis of nanocrystals with nonthermal plasmas. It discusses the luminescent properties of plasma-produced silicon nanocrystals and their application in devices such as light emitting diodes. The ability of plasma synthesis to generate doped nanocrystals is a particularly appealing attribute. We present boron and phosphorous doped silicon nanocrystals and review their applications as near infrared plasmonic materials. Finally, the author presents his view of some important research needs in the area of nonthermal plasma synthesis of nanocrystals.

Keywords

Nonthermal plasma Nanocrystals Electronic materials Thin films 

References

  1. 1.
    Schaller RD, Klimov VI (2004) Phys Rev Lett 92(18):186601–186604CrossRefGoogle Scholar
  2. 2.
    Semonin OE, Luther JM, Choi S, Chen H-Y, Gao J, Nozik AJ, Beard MC (2011) Science 334(6062):1530–1533CrossRefGoogle Scholar
  3. 3.
    Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X (2014) Nature 515:96–99CrossRefGoogle Scholar
  4. 4.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Proc Natl Acad Sci USA 100(23):13549–13554CrossRefGoogle Scholar
  5. 5.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Plasmonics 2(3):107–118CrossRefGoogle Scholar
  6. 6.
    Pillai S, Green MA (2010) Sol Energy Mater Sol Cells 94(9):1481–1486CrossRefGoogle Scholar
  7. 7.
    Clavero C (2014) Nat Photonics 8(2):95–103CrossRefGoogle Scholar
  8. 8.
    Llordes A, Garcia G, Gazquez J, Milliron DJ (2013) Nature 500(7462):323–326CrossRefGoogle Scholar
  9. 9.
    Labelle AJ, Thon SM, Masala S, Adachi MM, Dong H, Farahani M, Ip AH, Fratalocchi A, Sargent EH (2015) Nano Lett 15(2):1101–1108CrossRefGoogle Scholar
  10. 10.
    Mangolini L, Thimsen E, Kortshagen U (2005) Nano Lett 5(4):655–659CrossRefGoogle Scholar
  11. 11.
    Schweigert VA, Schweigert IV (1996) J Phys D Appl Phys 29:655CrossRefGoogle Scholar
  12. 12.
    Stegner AR, Pereira RN, Klein K, Wiggers H, Brandt MS, Stutzmann M (2007) Phys B 401–402:541–545CrossRefGoogle Scholar
  13. 13.
    Pi XD, Gresback R, Liptak RW, Campbell SA, Kortshagen U (2008) Appl Phys Lett 92(12):123102CrossRefGoogle Scholar
  14. 14.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  15. 15.
    Jurbergs D, Mangolini L, Rogojina E, Kortshagen U (2006) Appl Phys Lett 88:233116CrossRefGoogle Scholar
  16. 16.
    Cheng KY, Anthony R, Kortshagen UR, Holmes RJ (2011) Nano Lett 11(5):1952–1956CrossRefGoogle Scholar
  17. 17.
    Liu CY, Holman ZC, Kortshagen UR (2009) Nano Lett 9(1):449–452CrossRefGoogle Scholar
  18. 18.
    Ding Y, Sugaya M, Liu QM, Zhou S, Nozaki T (2014) Nano Energy 10:322–328CrossRefGoogle Scholar
  19. 19.
    Ding Y, Gresback R, Liu QM, Zhou S, Pi XD, Nozaki T (2014) Nano Energy 9:25–31CrossRefGoogle Scholar
  20. 20.
    Holman Z, Liu C, Kortshagen U (2010) Nano Lett 10(7):2661–2666CrossRefGoogle Scholar
  21. 21.
    Gresback R, Kramer NJ, Ding Y, Chen T, Kortshagen UR, Nozaki T (2014) ACS Nano 8(6):5650–5656CrossRefGoogle Scholar
  22. 22.
    Ifuku T, Otobe M, Itoh A, Oda S (1997) Jpn J Appl Phys 36:4031–4034CrossRefGoogle Scholar
  23. 23.
    Gorla CR, Liang S, Tompa GS, Mayo WE, Lu Y (1997) J Vac Sci Technol A 15:860CrossRefGoogle Scholar
  24. 24.
    Bapat A, Perrey C, Campbell S, Carter C, Kortshagen U (2003) J Appl Phys 94(3):1969–1974CrossRefGoogle Scholar
  25. 25.
    Knipping J, Wiggers H, Rellinghaus B, Roth P, Konjhodzic D, Meier C (2004) J Nanosci Nanotechnol 4(8):1039–1044CrossRefGoogle Scholar
  26. 26.
    Sankaran RM, Holunga D, Flagan RC, Giapis KP (2005) Nano Lett 5(3):537–541CrossRefGoogle Scholar
  27. 27.
    Nozaki T, Sasaki K, Ogino T, Asahi D, Okazaki K (2007) Nanotechnology 18(23):235603CrossRefGoogle Scholar
  28. 28.
    Askari S, Levchenko I, Ostrikov K, Maguire P, Mariotti D (2014) Appl Phys Lett 104(16):163103CrossRefGoogle Scholar
  29. 29.
    Barwe B, Stein A, Cibulka OE, Pelant I, Ghanbaja J, Belmonte T, Benedikt J (2015) Plasma Process Polym 12(2):132–140CrossRefGoogle Scholar
  30. 30.
    Rao NP, Tymiak N, Blum J, Neuman A, Lee HJ, Girshick SL, McMurry PH, Heberlein J (1998) J Aerosol Sci 29:707CrossRefGoogle Scholar
  31. 31.
    Holman Z, Kortshagen U (2010) Nanotechnology 21(33):335302CrossRefGoogle Scholar
  32. 32.
    Mangolini L, Kortshagen U (2009) Phys Rev E 79:026405CrossRefGoogle Scholar
  33. 33.
    Kramer NJ, Anthony RJ, Mamunuru M, Aydil ES, Kortshagen UR (2014) J Phys D Appl Phys 47(7):075202CrossRefGoogle Scholar
  34. 34.
    Cullis AG, Canham LT (1991) Nature 335:335–338CrossRefGoogle Scholar
  35. 35.
    Mangolini L, Jurbergs D, Rogojina E, Kortshagen U (2006) J Lumin 121:327–334CrossRefGoogle Scholar
  36. 36.
    Erwin SC, Zu L, Haftel MI, Efros AL, Kennedy TA, Norris DJ (2005) Nature 436(7047):91–94CrossRefGoogle Scholar
  37. 37.
    Galli G (2005) Nature 436(7047):32–33CrossRefGoogle Scholar
  38. 38.
    Mubeen S, Lee J, Singh N, Krämer S, Stucky GD, Moskovits M (2013) Nat Nanotechnol 8(4):247–251CrossRefGoogle Scholar
  39. 39.
    Atwater HA, Polman A (2010) Nat Mater 9:205–213CrossRefGoogle Scholar
  40. 40.
    Neumann O, Urban AS, Day J, Lal S, Nordlander P (2012) ACS Nano 7(1):42–49CrossRefGoogle Scholar
  41. 41.
    Luther JM, Jain PK, Ewers T, Alivisatos AP (2011) Nat Mater 10:361–366CrossRefGoogle Scholar
  42. 42.
    Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2013) ACS Nano 8:834–840CrossRefGoogle Scholar
  43. 43.
    Link S, Mohamed MB, El-Sayed MA (1999) J Phys Chem B 103:3073–3077CrossRefGoogle Scholar
  44. 44.
    Manthiram K, Alivisatos AP (2012) J Am Chem Soc 134(9):3995–3998CrossRefGoogle Scholar
  45. 45.
    Kanehara M, Koike H, Yoshinaga T, Teranishi T (2009) J Am Chem Soc 131(49):17736–17737CrossRefGoogle Scholar
  46. 46.
    Gordon TR, Paik T, Klein DR, Naik GV, Caglayan H, Boltasseva A, Murray CB (2013) Nano Lett 13(6):2857–2863CrossRefGoogle Scholar
  47. 47.
    Buonsanti R, Llordes A, Aloni S, Helms BA, Milliron DJ (2011) Nano Lett 11(11):4706–4710CrossRefGoogle Scholar
  48. 48.
    Rowe DJ, Jeong JS, Mkhoyan KA, Kortshagen UR (2013) Nano Lett 13(3):1317–1322CrossRefGoogle Scholar
  49. 49.
    Zhou S, Pi X, Ni Z, Ding Y, Jiang Y, Jin C, Delerue C, Yang D, Nozaki T (2015) ACS Nano 9(1):378–386CrossRefGoogle Scholar
  50. 50.
    Thimsen E, Kortshagen UR, Aydil ES (2014) Chem Commun 50(61):8346–8349CrossRefGoogle Scholar
  51. 51.
    Kramer NJ, Schramke KS, Kortshagen UR (2015) Nano Lett 15:5597–5603CrossRefGoogle Scholar
  52. 52.
    Thimsen E, Johnson M, Zhang X, Wagner AJ, Mkhoyan KA, Kortshagen UR, Aydil ES (2014) Nat Commun 5:5822CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations