Plasma Chemistry and Plasma Processing

, Volume 35, Issue 6, pp 979–991 | Cite as

Nitrogen Atmospheric-Pressure-Plasma-Jet Induced Oxidation of SnOx Thin Films

  • Guan-Wei Lin
  • Yu-Hao Jiang
  • Peng-Kai Kao
  • I-Chung Chiu
  • Yu-Han Wu
  • Cheng-Che Hsu
  • I-Chun Cheng
  • Jian-Zhang Chen
Original Paper


SnOx thin films that were rf-sputter-deposited under various gas flow ratios ([O2]/([O2] + [Ar]) OFR = 3.0, 3.6, 4.2 and 4.8 %) were rapidly annealed using atmospheric pressure plasma jets (APPJs) in temperature range of ~350–386 °C for up to 5 min. The original electron probe micro-analysis [O] contents in the as-deposited films were ~25, ~30, ~35 and ~40 % for films deposited at ([O2]/([O2] + [Ar]) gas flow ratios OFR = 3.0, 3.6, 4.2 and 4.8 %, respectively. APPJ annealing increased the [O] content to ~35 % for films deposited at OFR = 3.0 and 3.6 %, where the [O] content remained in similar levels for films deposited at OFR = 4.2 and 4.8 %. Crystalline metallic Sn was identified in films as-deposited at OFR = 3.0 and 3.6 %; on the other hand, an X-ray amorphous SnOx phase was identified in films as-deposited at OFR = 4.2 and 4.8 %. Crystallization and oxidation by APPJ annealing improved the transmittance and blue-shifted the absorption band edge to ~420 nm. All APPJ-annealed films exhibit n-type conductivity that may be contributed by the mixed phases of SnO, SnO2 and a small amount of Sn.


Atmospheric pressure plasma jet Oxidation  SnOx Sn SnO SnO2 



The authors gratefully acknowledge funding support from the Ministry of Science and Technology of Taiwan [MOST 102-2221-E-002-060, MOST 103-2221-E-002-057, MOST 104-2221-E-002-103 (JZC) and MOST 100-2221-E-002-151-MY3 and MOST 101-2628-E-002-020-MY3 (ICC)]. The authors thank Mr. Chung-Yuan Kao and Ms. Yuan-Tze Lee of the Instrumentation Center of National Taiwan University for their assistances with EPMA and SEM operation.


  1. 1.
    Y-w Hsu, Li H-C, Yang Y-J, C-C Hsu (2011) Deposition of zinc oxide thin films by an atmospheric pressure plasma jet. Thin Solid Films 519(10):3095–3099CrossRefGoogle Scholar
  2. 2.
    Zhao P, Zheng W, Meng YD, Nagatsu M (2013) Characteristics of high-purity Cu thin films deposited on polyimide by radio-frequency Ar/H-2 atmospheric-pressure plasma jet. J Appl Phys 113(12):123301. doi: 10.1063/1.4795808 CrossRefGoogle Scholar
  3. 3.
    Schäfer J, Foest R, Quade A, Ohl A, Weltmann K (2008) Local deposition of SiOx plasma polymer films by a miniaturized atmospheric pressure plasma jet (APPJ). J Phys D Appl Phys 41(19):194010CrossRefGoogle Scholar
  4. 4.
    Chiang MH, Liao KC, Lin IM, Lu CC, Huang HY, Kuo CL, Wu JS, Hsu CC, Chen SH (2010) Effects of oxygen addition and treating distance on surface cleaning of ITO glass by a non-equilibrium nitrogen atmospheric-pressure plasma jet. Plasma Chem Plasma Process 30(5):553–563. doi: 10.1007/s11090-010-9237-4 CrossRefGoogle Scholar
  5. 5.
    Lee EJ, Kwon JS, Om JY, Moon SK, Uhm SH, Choi EH, Kim KN (2014) The enhanced integrin-mediated cell attachment and osteogenic gene expression on atmospheric pressure plasma jet treated micro-structured titanium surfaces. Curr Appl Phys 14:S167–S171. doi: 10.1016/j.cap.2013.12.033 CrossRefGoogle Scholar
  6. 6.
    Kwon JS, Kim YH, Choi EH, Kim KN (2013) The effects of non-thermal atmospheric pressure plasma jet on attachment of osteoblast. Curr Appl Phys 13:S42–S47. doi: 10.1016/j.cap.2012.12.022 CrossRefGoogle Scholar
  7. 7.
    Jokanovic V, Vilotijevic M, Colovic B, Jenko M, Anzel I, Rudolf R (2015) Enhanced adhesion properties, structure and sintering mechanism of hydroxyapatite coatings obtained by plasma jet deposition. Plasma Chem Plasma Process 35(1):1–19. doi: 10.1007/s11090-014-9599-0 CrossRefGoogle Scholar
  8. 8.
    Hur M, Kang W, Lee J, Song Y (2015) Surface treatment of polyimide substrates using dielectric barrier discharge reactors based on l-shaped electrodes. Plasma Chem Plasma Process 35(1):231–246. doi: 10.1007/s11090-014-9598-1 CrossRefGoogle Scholar
  9. 9.
    Donegan M, Milosavljevic V, Dowling DP (2013) Activation of PET using an RF atmospheric plasma system. Plasma Chem Plasma Process 33(5):941–957. doi: 10.1007/s11090-013-9474-4 CrossRefGoogle Scholar
  10. 10.
    Suttikul T, Kodama S, Sekiguchi H, Chavadej S (2014) Ethylene epoxidation in an AC dielectric barrier discharge jet system. Plasma Chem Plasma Process 34(1):187–205. doi: 10.1007/s11090-013-9492-2 CrossRefGoogle Scholar
  11. 11.
    Prantsidou M, Whitehead J (2015) The chemistry of gaseous dodecane degradation in a BaTiO3 packed-bed plasma reactor. Plasma Chem Plasma Process 35(1):159–172. doi: 10.1007/s11090-014-9597-2 CrossRefGoogle Scholar
  12. 12.
    Kelly-Wintenberg K, Sherman DM, Tsai PPY, Ben Gadri R, Karakaya F, Chen ZY, Roth JR, Montie TC (2000) Air filter sterilization using a one atmosphere uniform glow discharge plasma (the Volfilter). IEEE T Plasma Sci 28(1):64–71. doi: 10.1109/27.842866 CrossRefGoogle Scholar
  13. 13.
    Montie TC, Kelly-Wintenberg K, Roth JR (2000) An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE T Plasma Sci 28(1):41–50. doi: 10.1109/27.842860 CrossRefGoogle Scholar
  14. 14.
    Deng SX, Cheng C, Ni GH, Meng YD, Chen H (2010) Bacillus subtilis devitalization mechanism of atmosphere pressure plasma jet. Curr Appl Phys 10(4):1164–1168. doi: 10.1016/j.cap.2010.02.004 CrossRefGoogle Scholar
  15. 15.
    Chang H, Hsu CM, Kao PK, Yang YJ, Hsu CC, Cheng IC, Chen JZ (2014) Dye-sensitized solar cells with nanoporous TiO2 photoanodes sintered by N-2 and air atmospheric pressure plasma jets with/without air-quenching. J Power Sources 251:215–221. doi: 10.1016/j.jpowsour.2013.11.051 CrossRefGoogle Scholar
  16. 16.
    Chang H, Yang YJ, Li HC, Hsu CC, Cheng IC, Chen JZ (2013) Preparation of nanoporous TiO2 films for DSSC application by a rapid atmospheric pressure plasma jet sintering process. J Power Sources 234:16–22CrossRefGoogle Scholar
  17. 17.
    Roth JR, Nourgostar S, Bonds TA (2007) The one atmosphere uniform glow discharge plasma (OAUGDP)—a platform technology for the 21st century. IEEE T Plasma Sci 35(2):233–250. doi: 10.1109/Tps.2007.892711 CrossRefGoogle Scholar
  18. 18.
    Schutze A, Jeong JY, Babayan SE, Jaeyoung P, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. Plasma Sci IEEE Trans 26(6):1685–1694. doi: 10.1109/27.747887 CrossRefGoogle Scholar
  19. 19.
    Lien ST, Li HC, Yang YJ, Hsu CC, Cheng IC, Chen JZ (2013) Atmospheric pressure plasma jet annealed ZnO films for MgZnO/ZnO heterojunctions. J Phys D Appl Phys 46(7):075202. doi: 10.1088/0022-3727/46/7/075202 CrossRefGoogle Scholar
  20. 20.
    Wu TH, Chen JZ, Hsu CC, Cheng IC (2014) Electromechanical properties of MgZnO/ZnO heterostructures on flexible polyimide and stainless steel substrates under flexing. J Phys D Appl Phys. doi: 10.1088/0022-3727/47/25/255102 Google Scholar
  21. 21.
    Chang H, Yang YJ, Hsu CM, Hsu CC, Cheng IC, Chen JZ (2014) Atmospheric-pressure-plasma-jet particulate TiO2 scattering layer deposition processes for dye-sensitized solar cells. ECS J Solid State Sci Technol 3(10):Q177–Q181CrossRefGoogle Scholar
  22. 22.
    Wang C, Chen JZ (2015) Atmospheric-pressure-plasma-jet sintered nanoporous SnO2. Ceram Int 41:5478–5483CrossRefGoogle Scholar
  23. 23.
    Wang C, Cheng IC, Chen JZ (2015) Ultrafast atmospheric-pressure-plasma-jet sintering of nanoporous TiO2–SnO2 composites with features defined by screen-printing. ECS J Solid State Sci Technol 4:P3020–P3025CrossRefGoogle Scholar
  24. 24.
    Chen JZ, Hsu CC, Wang C, Liao WY, Wu CH, Wu TJ, Liu HW, Chang H, Lien ST, Li HC, Hsu CM, Kao PK, Yang YJ, Cheng IC (2015) Rapid atmospheric-pressure-plasma-jet processed porous materials for energy harvesting and storage devices. Coatings 5:26–38CrossRefGoogle Scholar
  25. 25.
    Liao WY, Chang H, Yang YJ, Hsu CC, Cheng IC, Chen JZ (2014) Oxygen-deficient indium tin oxide thin films annealed by atmospheric pressure plasma jets with/without air-quenching. Appl Surf Sci 292:213–218CrossRefGoogle Scholar
  26. 26.
    Y-w Hsu, Yang Y-j Wu, C-y Hsu C-c (2010) Downstream characterization of an atmospheric pressure pulsed arc jet. Plasma Chem Plasma Process 30(3):363–372CrossRefGoogle Scholar
  27. 27.
    Hsu CC, Yang YJ (2010) The increase of the jet size of an atmospheric-pressure plasma jet by ambient air control. IEEE T Plasma Sci 38(3):496–499. doi: 10.1109/Tps.2009.2038701 CrossRefGoogle Scholar
  28. 28.
    Hsu CC, Wu CY (2009) Electrical characterization of the glow-to-arc transition of an atmospheric pressure pulsed arc jet. J Phys D Appl Phys 42(2009):215202CrossRefGoogle Scholar
  29. 29.
    Liang LY, Liu ZM, Cao HT, Yu Z, Shi YY, Chen AH, Zhang HZ, Fang YQ, Sun XL (2010) Phase and optical characterizations of annealed SnO thin films and their p-type TFT application. J Electrochem Soc 157(6):H598–H602. doi: 10.1149/1.3385390 CrossRefGoogle Scholar
  30. 30.
    Leja E, Pisarkiewicz T, Kolodziej A (1980) Electrical-properties of nonstoichiometric tin oxide-films obtained by the Dc reactive sputtering method. Thin Solid Films 67(1):45–48. doi: 10.1016/0040-6090(80)90285-0 CrossRefGoogle Scholar
  31. 31.
    Geurts J, Rau S, Richter W, Schmitte FJ (1984) Sno films and their oxidation to SnO2—Raman-scattering, Ir reflectivity and X-ray-diffraction studies. Thin Solid Films 121(3):217–225. doi: 10.1016/0040-6090(84)90303-1 CrossRefGoogle Scholar
  32. 32.
    Moreno MS, Mercader RC, Bibiloni AG (1992) Study of intermediate oxides in SnO thermal-decomposition. J Phys Condens Matter 4(2):351–355. doi: 10.1088/0953-8984/4/2/004 CrossRefGoogle Scholar
  33. 33.
    Pan XQ, Fu L (2001) Oxidation and phase transitions of epitaxial tin oxide thin films on [(1)over-bar 012] sapphire. J Appl Phys 89(11):6048–6055. doi: 10.1063/1.1368865 CrossRefGoogle Scholar
  34. 34.
    Moreno MS, Punte G, Rigotti G, Mercader RC, Weisz AD, Blesa MA (2001) Kinetic study of the disproportionation of tin monoxide. Solid State Ion 144(1–2):81–86. doi: 10.1016/S0167-2738(01)00882-7 CrossRefGoogle Scholar
  35. 35.
    Hwang S, Kim YY, Lee JH, Seo DK, Lee JY, Cho HK (2012) Irregular electrical conduction types in tin oxide thin films induced by nanoscale phase separation. J Am Ceram Soc 95(1):324–327. doi: 10.1111/j.1551-2916.2011.04791.x CrossRefGoogle Scholar
  36. 36.
    Patterson AL (1939) The scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982CrossRefGoogle Scholar
  37. 37.
    Caraveo-Frescas JA, Nayak PK, Al-Jawhari HA, Granato DB, Schwingenschlogl U, Alshareeft HN (2013) Record mobility in transparent p-type tin monoxide films and devices by phase engineering. ACS Nano 7(6):5160–5167. doi: 10.1021/Nn400852r CrossRefGoogle Scholar
  38. 38.
    Ogo Y, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M, Hosono H (2008) p-channel thin-film transistor using p-type oxide semiconductor. SnO Appl Phys Lett 93(3):032113. doi: 10.1063/1.2964197 CrossRefGoogle Scholar
  39. 39.
    Giefers H, Porsch F, Wortmann G (2005) Kinetics of the disproportionation of SnO. Solid State Ion 176(1–2):199–207. doi: 10.1016/j.ssi.2004.06.006 CrossRefGoogle Scholar
  40. 40.
    Giefers H, Porsch F, Wortmann G (2005) Thermal disproportionation of SnO under high pressure. Solid State Ion 176(13–14):1327–1332. doi: 10.1016/j.ssi.2005.03.003 CrossRefGoogle Scholar
  41. 41.
    Gauzzi F, Verdini B, Maddalena A, Principi G (1985) X-ray-diffraction and mossbauer analyses of SnO disproportionation products. Inorg Chim A Art Let 104(1):1–7. doi: 10.1016/S0020-1693(00)83778-0 CrossRefGoogle Scholar
  42. 42.
    Hsu PC, Hsu CJ, Chang CH, Tsai SP, Chen WC, Hsieh HH, Wu CC (2014) Sputtering deposition of p-type SnO films with SnO2 target in hydrogen-containing atmosphere. ACS Appl Mater Interfaces 6(16):13724–13729. doi: 10.1021/Am5031787 CrossRefGoogle Scholar
  43. 43.
    Hsu P-C, Chen W-C, Tsai Y-T, Kung Y-C, Chang C-H, Hsu C-J, Wu C-C, Hsieh H-H (2013) Fabrication of p-type SnO thin-film transistors by sputtering with practical metal electrodes. Jpn J Appl Phys 52(5):05DC07. doi: 10.7567/jjap.52.05dc07 CrossRefGoogle Scholar
  44. 44.
    Sakaushi K, Oaki Y, Uchiyama H, Hosono E, Zhou HS, Imai H (2010) Synthesis and applications of SnO nanosheets: parallel control of oxidation state and nanostructure through an aqueous solution route. Small 6(6):776–781. doi: 10.1002/smll.200902207 CrossRefGoogle Scholar
  45. 45.
    Sakaushi K, Oaki Y, Uchiyama H, Hosono E, Zhou HS, Imai H (2010) Aqueous solution synthesis of SnO nanostructures with tuned optical absorption behavior and photoelectrochemical properties through morphological evolution. Nanoscale 2(11):2424–2430. doi: 10.1039/C0nr00370k CrossRefGoogle Scholar
  46. 46.
    Fortunato E, Barros R, Barquinha P, Figueiredo V, Park S-HK, Hwang C-S, Martins R (2010) Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing. Appl Phys Lett 97(5):052105CrossRefGoogle Scholar
  47. 47.
    Hosono H, Ogo Y, Yanagi H, Kamiya T (2011) Bipolar conduction in SnO thin films. Electrochem Solid State 14(1):H13–H16. doi: 10.1149/1.3505288 CrossRefGoogle Scholar
  48. 48.
    Cabot A, Arbiol J, Ferre R, Morante JR, Chen FL, Liu ML (2004) Surface states in template synthesized tin oxide nanoparticles. J Appl Phys 95(4):2178–2180. doi: 10.1063/1.1639946 CrossRefGoogle Scholar
  49. 49.
    Luo H, Liang LY, Cao HT, Liu ZM, Zhuge F (2012) Structural, chemical, optical, and electrical evolution of SnOx films deposited by reactive rf magnetron sputtering. ACS Appl Mater Interfaces 4(10):5673–5677. doi: 10.1021/Am301601s CrossRefGoogle Scholar
  50. 50.
    Kim Y, Um J, Kim S, Kim SE (2012) p- to n-type conductivity inversion of nitrogen-incorporated SnO deposited via sputtering. ECS Solid State Lett 1(2):P29–P31. doi: 10.1149/2.010202ssl CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Guan-Wei Lin
    • 1
  • Yu-Hao Jiang
    • 1
  • Peng-Kai Kao
    • 2
  • I-Chung Chiu
    • 3
  • Yu-Han Wu
    • 4
  • Cheng-Che Hsu
    • 2
  • I-Chun Cheng
    • 3
  • Jian-Zhang Chen
    • 1
  1. 1.Graduate Institute of Applied MechanicsNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Chemical EngineeringNational Taiwan UniversityTaipeiTaiwan
  3. 3.Graduate Institute of Photonics and Optoelectronics and Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan
  4. 4.Materials and Chemical Research LaboratoriesIndustrial Technology Research InstituteChutungTaiwan

Personalised recommendations