Plasma Chemistry and Plasma Processing

, Volume 35, Issue 6, pp 1015–1028 | Cite as

Atmospheric Pressure Plasma Polymerization of Super-Hydrophobic Nano-films Using Hexamethyldisilazane Monomer

Original Paper

Abstract

The super-hydrophobic nano-films were synthesized by atmospheric pressure plasma jet using hexamethyldisilazane. In this paper, the atmospheric pressure plasma jet reacting with air was used to determine the formation of plasma polymerized nano-film. The atmospheric pressure plasma polymerized nano-film surface properties were determined by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and atomic forced microscopy. Specifically, it has been observed that atmospheric pressure plasma polymerization with the appropriate monomer gas flow rate cause the formation of the super-hydrophobic film. The surface properties of atmospheric pressure plasma polymerized nano-films were determined as the Cassie–Baxter state. It was examined that super-hydrophobic nano-film surface exhibits the organosilicon sphere stacking structure. Such sphere stacking structure does not only cause the hydrophobicity, it also stabilizes the Cassie regime, and thus favors the water repellency.

Keywords

Atmospheric pressure plasma jet Super-hydrophobic film Hexamethyldisilazane Plasma polymerized films Cassie–Baxter state 

References

  1. 1.
    Yu QS, Yasuda HK (1998) Plasma Chem Plasma Process 18:461–485CrossRefGoogle Scholar
  2. 2.
    Babayan SE, Ding G, Nowling GR, Yang X, Hicks RF (2002) Plasma Chem Plasma Process 22:255–269CrossRefGoogle Scholar
  3. 3.
    Miclea M, Franzke J (2007) Plasma Chem Plasma Process 27:205–224CrossRefGoogle Scholar
  4. 4.
    Dong X, Chen M, Wang Y, Yu QS (2014) Clin Plasma Med 1:11–16CrossRefGoogle Scholar
  5. 5.
    Hsu YW, Yang YJ, Wu CY, Hsu CC (2010) Plasma Chem Plasma Process 30(3):363–372CrossRefGoogle Scholar
  6. 6.
    Ma Y, Chen J, Yang B, Pu S, Yu QS (2014) IEEE Trans Plasma Sci 42:1607–1614CrossRefGoogle Scholar
  7. 7.
    Farhat S, Gilliam M, Rabago M, Baranc C, Walterc N, Zand A (2013) Surf Coat Technol 241:123–129CrossRefGoogle Scholar
  8. 8.
    Gilliam M, Farhat S, Zand A, Magyar M, Garner G (2014) Plasma Process Polym 11:1037–1043CrossRefGoogle Scholar
  9. 9.
    Chang CH, Ramshaw JD (1993) Plasma Chem Plasma Process 13:189–202CrossRefGoogle Scholar
  10. 10.
    Tang J, Zhao W, Duan J, Duan Y (2011) IEEE Trans Plasma Sci 39:2080–2081CrossRefGoogle Scholar
  11. 11.
    Ritts AC, Liu CH, Yu QS (2011) Thin Solid Films 519:4289–4824CrossRefGoogle Scholar
  12. 12.
    De Geyter N, Morent R, Gengembre L, Leys C, Payen E, Van Vlierberghe S, Schacht E (2008) Plasma Chem Plasma Process 28:289–298CrossRefGoogle Scholar
  13. 13.
    Huang C, Hsu WT, Liu CH, Wu SY, Yang SH, Chen TH, Wei TC (2009) IEEE Trans Plasma Sci 37:1127–1128CrossRefGoogle Scholar
  14. 14.
    Huang C, Wu SY, Liu CH, Chang YC, Tsai CY (2011) Jpn J Appl Phys 50:01AH0501–01AH0505CrossRefGoogle Scholar
  15. 15.
    Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741–1747CrossRefGoogle Scholar
  16. 16.
    Quéré D (2008) Annu Rev Mater Res 38:71–99CrossRefGoogle Scholar
  17. 17.
    Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Rev Mod Phys 81:739–805CrossRefGoogle Scholar
  18. 18.
    Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Langmuir 12:2125–2127CrossRefGoogle Scholar
  19. 19.
    Bico J, Thiele U, Quéré D (2002) Colloids Surf A Physicochem Eng Asp 206:41–46CrossRefGoogle Scholar
  20. 20.
    Gilliam M, Yu QS (2007) J Appl Polym Sci 105:360–372CrossRefGoogle Scholar
  21. 21.
    Yasuda H (2005) Luminous chemical vapor deposition and interface engineering. Marcel Dekker, New YorkGoogle Scholar
  22. 22.
    Tsai CY, Juang RS, Huang C (2011) Jpn J Appl Phys 50:08KA0201–08KA0207CrossRefGoogle Scholar
  23. 23.
    Trunec D, Narvratil Z, Stahel P, Zajickova L, Bursikova V, Cech J (2004) J Phys D Appl Phys 37:2112–2120CrossRefGoogle Scholar
  24. 24.
    Alexandrov SE, McSporran N, Hitchman ML (2005) Chem Vap Depos 11:481–490CrossRefGoogle Scholar
  25. 25.
    Hody H, Pireaux JJ, Choquet P, Maryline MC (2010) Surf Coat Technol 205:22–29CrossRefGoogle Scholar
  26. 26.
    Bulou S, Le Brizoua L, Miska P, de Poucques L, Hugon R, Belmahi M, Bougdira J (2011) Surf Coat Technol 205:S214–S217CrossRefGoogle Scholar
  27. 27.
    van Ooij WJ, Eufinger S, Guo S (1997) Plasma Chem Plasma Process 17:123–154CrossRefGoogle Scholar
  28. 28.
    Alexander MR, Short RD, Jones FR, Michaeli W, Blomfield CJ (1999) Appl Surf Sci 137:179–183CrossRefGoogle Scholar
  29. 29.
    Wavhal DS, Zhang J, Steen ML, Fisher ER (2006) Plasma Process Polym 3:276–287CrossRefGoogle Scholar
  30. 30.
    Choudhury AJ, Barve SA, Chutia J, Kakati H, Pal AR, Jagannath N, Mithal R, Kishore M, Pandey DS (2011) Thin Solid Films 519:7864–7870CrossRefGoogle Scholar
  31. 31.
    Morent R, Geyter N, Vlierberghe S, Dubruel P, Leys C, Gengembre L, Schacht E, Payen E (2009) Prog Org Coat 64:304–310CrossRefGoogle Scholar
  32. 32.
    Yasuda H (1985) Plasma polymerization. Academic Press, LondonGoogle Scholar
  33. 33.
    Takahashi K, Tachibana K (2001) J Vac Sci Technol A19:2055–2060CrossRefGoogle Scholar
  34. 34.
    Teare DOH, Spanos CG, Ridley P, Kinmond EJ, Roucoules V, Badyal JPS, Brewer Sa, Coulson S, Willis C (2002) Chem Mater 14:4566–4571CrossRefGoogle Scholar
  35. 35.
    Hsieh CT, Chen WY, Wu FL (2008) Carbon 46:1218–1224CrossRefGoogle Scholar
  36. 36.
    Lin JH, Tsai CY, Liu WT, Syu YK, Huang C (2013) Jpn J Appl Phys 52:05EA01–05EB06CrossRefGoogle Scholar
  37. 37.
    Guruvenket S, Andrie S, Simon M, Johnson KW, Sailer RA (2012) ACS Appl Mater Interfaces 4:5293–5299CrossRefGoogle Scholar
  38. 38.
    Blaszczyk-Lezak I, Wrobel AM, Aoki T, Nakanishi Y, Kucinska I, Tracz A (2006) Thin Solid Film 497:24–34CrossRefGoogle Scholar
  39. 39.
    Nowling GR, Yajima M, Babayan SE, Moravej M, Yang X, Hoffman W, Hicks RF (2005) Plasma Sources Sci Technol 14:477–484CrossRefGoogle Scholar
  40. 40.
    Ladwig A, Babayan S, Smith M, Hester M, Highland W, Koch R, Hicks RF (2007) Surf Coat Technol 201:6460–6464CrossRefGoogle Scholar
  41. 41.
    Tanaka K, Inomata T, Kogoma M (2001) Thin Solid Films 386:217–221CrossRefGoogle Scholar
  42. 42.
    Borris J, Thomas M, Klages C-P, Faupel F, Zaporojtchenko V (2007) Plasma Process Polym 4:S482–S486CrossRefGoogle Scholar
  43. 43.
    Weichart J, Mtiller J (1991) Prog Colloid Polym Sci 85:111–117CrossRefGoogle Scholar
  44. 44.
    Hsieh CT, Wu F, Yang S (2008) Surf Coat Technol 202:6103–6108CrossRefGoogle Scholar
  45. 45.
    Shibuichi S, Yamamoto T, Onda T, Tsujii K (1998) J Colloid Interface Sci 208:287–294CrossRefGoogle Scholar
  46. 46.
    Hang T, Hu A, Ling H, Li M, Mao D (2010) Appl Surf Sci 256:2400–2404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials ScienceYuan Ze UniversityChungliTaiwan

Personalised recommendations