Plasma Chemistry and Plasma Processing

, Volume 35, Issue 6, pp 1043–1056 | Cite as

Generation of In-Package Cold Plasma and Efficacy Assessment Using Methylene Blue

  • N. N. Misra
  • K. M. Keener
  • P. Bourke
  • P. J. Cullen
Original Paper

Abstract

In-package cold plasma processing is highly desirable in the food and biomedical industries as it allows for efficient sterilisation, and prevents against post-packaging contamination. The sensitivity of methylene blue dye to the reactive species generated from cold plasma is tested in this work for possible use as a marker of process efficacy. A large gap dielectric barrier discharge (DBD) operating in air was employed to generate the plasma discharge within the sealed package. The discolouration of methylene blue dye placed inside the package was studied as a function of DBD operation time, applied voltage and spatial position. Ozone concentrations were measured immediately after treatment as an indicator of one of the key meta-stables produced by the approach with values of up to 1800 ppm recorded. Visible absorption spectra and pH changes of the dye were measured. A decrease in peak absorbance of the dyes and pH was observed as a function of treatment time and ozone concentration. Optical emission spectroscopy of the discharge revealed the generation of excited nitrogen and reactive oxygen species. The results of kinetic modelling revealed that the dye discolouration can be used as a suitable marker reaction for treatment times within the order of 30 s.

Keywords

Ozone AOP Non-thermal plasma Dielectric barrier discharge Methylene blue 

References

  1. 1.
    Weltmann K, Brandenburg R, Bussiahn R, Haehnel M, Polak M, von Woedtke T (2011) Ehlbeck J Prospects, problems and chances of the use of plasmas in life-sciences. In: Hensel K, Machala Z (eds) NATO advanced research workshop: plasma for bio-decontamination. Medicine and food security, Jasná, Slovakia, pp 13–14Google Scholar
  2. 2.
    Misra NN, Tiwari BK, Raghavarao KSMS, Cullen PJ (2011) Nonthermal plasma inactivation of food-borne pathogens. Food Eng Rev 3(3–4):159–170. doi:10.1007/s12393-011-9041-9 CrossRefGoogle Scholar
  3. 3.
    Dobrynin D, Fridman G, Mukhin YV, Wynosky-Dolfi MA, Rieger J, Rest RF, Gutsol AF, Fridman A (2010) Cold plasma inactivation of Bacillus cereus and Bacillus anthracis (anthrax) spores. IEEE Trans Plasma Sci 38(8):1878–1884. doi:10.1109/TPS.2010.2041938 CrossRefGoogle Scholar
  4. 4.
    Schwabedissen A, Łaciński P, Chen X, Engemann J (2007) PlasmaLabel–a new method to disinfect goods inside a closed package using dielectric barrier discharges. Contrib Plasma Phys 47(7):551–558. doi:10.1002/ctpp.200710071 CrossRefGoogle Scholar
  5. 5.
    Klockow PA, Keener KM (2009) Safety and quality assessment of packaged spinach treated with a novel ozone-generation system. LWT Food Sci Technol 42(6):1047–1053. doi:10.1016/j.lwt.2009.02.011 CrossRefGoogle Scholar
  6. 6.
    Misra NN, Moiseev T, Patil S, Pankaj SK, Bourke P, Mosnier JP, Keener KM, Cullen PJ (2014) Cold Plasma in modified atmospheres for post-harvest treatment of strawberries. Food Bioprocess Technol 7(10):3045–3054. doi:10.1007/s11947-014-1356-0 CrossRefGoogle Scholar
  7. 7.
    Misra NN, Patil S, Moiseev T, Bourke P, Mosnier JP, Keener KM, Cullen PJ (2014) In-package atmospheric pressure cold plasma treatment of strawberries. J Food Eng 125:131–138. doi:10.1016/j.jfoodeng.2013.10.023 CrossRefGoogle Scholar
  8. 8.
    Misra NN, Keener KM, Bourke P, Mosnier JP, Cullen PJ (2014) In-package atmospheric pressure cold plasma treatment of cherry tomatoes. J Biosci Bioeng 118(2):177–182. doi:10.1016/j.jbiosc.2014.02.005 CrossRefGoogle Scholar
  9. 9.
    Chiper AS, Chen W, Mejlholm O, Dalgaard P, Stamate E (2011) Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO(2) for bacterial inactivation of biological samples. Plasma Sources Sci Technol 20(2):025008. doi:10.1088/0963-0252/20/2/025008 CrossRefGoogle Scholar
  10. 10.
    Jayasena DD, Kim HJ, Yong HI, Park S, Kim K, Choe W, Jo C (2015) Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: effects on pathogen inactivation and meat-quality attributes. Food Microbiol 46:51–57. doi:10.1016/j.fm.2014.07.009 CrossRefGoogle Scholar
  11. 11.
    Kim H-J, Yong HI, Park S, Kim K, Bae YS, Choe W, Oh MH, Jo C (2013) Effect of inactivating Salmonella Typhimurium in raw chicken breast and pork loin using an atmospheric pressure plasma jet. J Anim Sci Technol 55(6):545–549. doi:10.5187/jast.2013.55.6.545 CrossRefGoogle Scholar
  12. 12.
    Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23(1):1–46CrossRefGoogle Scholar
  13. 13.
    Huang F, Chen L, Wang H, Yan Z (2010) Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma. Chem Eng J 162(1):250–256. doi:10.1016/j.cej.2010.05.041 CrossRefGoogle Scholar
  14. 14.
    Misra NN, Ziuzina D, Cullen PJ, Keener KM (2013) Characterization of a novel atmospheric air cold plasma system for treatment of packaged biomaterials. Trans ASABE 56(3):1011–1016. doi:10.13031/trans.56.9939 Google Scholar
  15. 15.
    Ziuzina D, Patil S, Cullen PJ, Keener KM, Bourke P (2013) Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J Appl Microbiol 114(3):778–787. doi:10.1111/jam.12087 CrossRefGoogle Scholar
  16. 16.
    Chen LC (2000) Effects of factors and interacted factors on the optimal decolorization process of methyl orange by ozone. Water Res 34(3):974–982CrossRefGoogle Scholar
  17. 17.
    Pavlovich MJ, Chang H-W, Sakiyama Y, Clark DS, Graves DB (2013) Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J Phys D Appl Phys 46(14):145202. doi:10.1088/0022-3727/46/14/145202 CrossRefGoogle Scholar
  18. 18.
    Dojcinovic BP, Roglic GM, Obradovic BM, Kuraica MM, Kostic MM, Nesic J, Manojlovic DD (2011) Decolorization of reactive textile dyes using water falling film dielectric barrier discharge. J Hazard Mater 192(2):763–771. doi:10.1016/j.jhazmat.2011.05.086 CrossRefGoogle Scholar
  19. 19.
    Amjad M, Salam Z, Facta M, Ishaque K (2012) A simple and effective method to estimate the model parameters of dielectric barrier discharge ozone chamber. IEEE Trans Instrum Meas 99:1–8Google Scholar
  20. 20.
    Kogelschatz U, Eliasson B, Egli W (1997) Dielectric-barrier discharges. Principle and applications. J Phys IV 7(C4):47–66Google Scholar
  21. 21.
    Eliasson B, Hirth M, Kogelschatz U (1987) Ozone synthesis from oxygen in dielectric barrier discharges. J Phys D Appl Phys 20:1421CrossRefGoogle Scholar
  22. 22.
    Alonso JM, García J, Calleja AJ, Ribas J, Cardesin J (2005) Analysis, design, and experimentation of a high-voltage power supply for ozone generation based on current-fed parallel-resonant push-pull inverter. IEEE Trans Ind Appl 41(5):1364–1372CrossRefGoogle Scholar
  23. 23.
    Moiseev T, Misra NN, Patil S, Cullen PJ, Bourke P, Keener KM, Mosnier JP (2014) Post-discharge gas composition of a large-gap DBD in humid air by UV–Vis absorption spectroscopy. Plasma Sources Sci Technol 23(6):065033. doi:10.1088/0963-0252/23/6/065033 CrossRefGoogle Scholar
  24. 24.
    Patil S, Moiseev T, Misra NN, Cullen PJ, Mosnier JP, Keener KM, Bourke P (2014) Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. J Hosp Infect 88(3):162–169. doi:10.1016/j.jhin.2014.08.009 CrossRefGoogle Scholar
  25. 25.
    Salvermoser M, Murnick DE, Kogelschatz U (2008) Influence of water vapor on photochemical ozone generation with efficient 172 nm xenon excimer lamps. Ozone Sci Eng 30(3):228–237. doi:10.1080/01919510802070611 CrossRefGoogle Scholar
  26. 26.
    Salvermoser MJ, Kogelschatz U, Murnick DE (2009) Influence of humidity on photochemical ozone generation with 172 nm xenon excimer lamps. Eur Phys J Appl Phys 47(2):22812. doi:10.1051/epjap/2009063 CrossRefGoogle Scholar
  27. 27.
    Chiper AS, Aniţa V, Agheorghiesei C, Pohoaţa V, Aniţa M, Popa G (2004) Spectroscopic diagnostics for a DBD plasma in He/Air and He/N2 gas mixtures. Plasma Processes Polym 1(1):57–62. doi:10.1002/ppap.200400003 CrossRefGoogle Scholar
  28. 28.
    Gaydon A, Pearse R (1976) The identification of molecular spectra. The identification of Molecular Spectra. Chapman and Hall, LondonGoogle Scholar
  29. 29.
    Walsh JL, Liu DX, Iza F, Rong MZ, Kong MG (2010) Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium–oxygen glow discharges. J Phys D Appl Phys 43(3):032001. doi:10.1088/0022-3727/43/3/032001 CrossRefGoogle Scholar
  30. 30.
    Grabowski LR, van Veldhuizen EM, Pemen AJM, Rutgers WR (2007) Breakdown of methylene blue and methyl orange by pulsed corona discharge. Plasma Sources Sci Technol 16(2):226–232. doi:10.1088/0963-0252/16/2/003 CrossRefGoogle Scholar
  31. 31.
    Laroussi M (2009) Low-temperature plasmas for medicine? IEEE Trans Plasma Sci 37(6):714–725CrossRefGoogle Scholar
  32. 32.
    Oehmigen K, Hähnel M, Brandenburg R, Wilke C, Weltmann KD, von Woedtke T (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Processes Polym 7(3–4):250–257. doi:10.1002/ppap.200900077 CrossRefGoogle Scholar
  33. 33.
    Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42(5):053001. doi:10.1088/0022-3727/42/5/053001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. N. Misra
    • 1
    • 2
  • K. M. Keener
    • 3
  • P. Bourke
    • 1
  • P. J. Cullen
    • 1
    • 4
  1. 1.BioPlasma GroupDublin Institute of TechnologyDublin 1Ireland
  2. 2.R&DGeneral Mills IPLMumbaiIndia
  3. 3.Purdue UniversityWest LafayetteUSA
  4. 4.School of Chemical EngineeringUNSW AustraliaSydneyAustralia

Personalised recommendations