Plasma Chemistry and Plasma Processing

, Volume 35, Issue 5, pp 845–862 | Cite as

Dielectric Barrier Discharge Processing of trans-CF3CH=CHF and CF3C(O)CF(CF3)2, Their Mixtures with Air, N2, CO2 and Analysis of Their Decomposition Products

  • A. V. Tatarinov
  • I. V. Bilera
  • S. V. Avtaeva
  • V. A. Shakhatov
  • P. V. Solomakhin
  • R. Maladen
  • C. Prévé
  • D. Piccoz
Original Paper


The experimental study of the degradation of gaseous dielectrics after processing in the dielectric barrier discharge (DBD) is presented. Two pure gases trans-CF3CH=CHF (HFO-1234ze(E)), perfluoroketone CF3C(O)CF(CF3)2 (C5K), and also the following mixtures 75 %HFO-1234ze(E):25 %N2, 12 %C5K:88 %N2, 18.5 %C5K:81.5 %dry air, 9 %C5K:57.5 %HFO-1234ze(E):33.5 %N2, 9 %C5K:56 %HFO-1234ze(E):35 %CO2 have been used as test-gases. A content of the decomposition products of the gases before and after a 5-h workout in the barrier discharge has been determined by means of the chromatography-mass spectrometry and gas chromatography methods. Dilution of C5K with dry air greatly increases the degree of conversion of the source gas in the barrier discharge. Dilution of HFO-1234ze(E) and C5K with nitrogen, and the use of ternary mixtures 9 %C5K:57.5 %HFO-1234ze(E):33.5 %N2 and 9 %C5K:56 %HFO-1234ze(E):35 %CO2 significantly reduces the degree of conversion of the mixture compared with the source gases in the barrier discharge. After the DBD processing of two test-gases a large quantity of toxic C3F6 was found in pure C5K, and also a large number of highly toxic CF3CCH was found in pure HFO-1234ze(E). The least amount of toxic products after the DBD processing was detected in mixtures HFO-1234ze(E):N2 and C5K:HFO-1234ze(E):N2. The mixture C5K:HFO-1234ze(E):N2 has the best features among studied mixtures.


Hydrofluoroolefins Perfluoroketone SF6 Barrier discharge processing Gas chromatography 


  1. 1.
    Tsai W-T (2007) The decomposition products of sulfer hexafluoride (SF6): rewiews of environmental and health risk analysis. J Fluor Chem 128:1345–1352CrossRefGoogle Scholar
  2. 2.
    Reid AJ, Judd MD (2012) Ultra-wide bandwidth measurement of partial discharge current pulses in SF6. J Phys D Appl Phys 45:165203CrossRefGoogle Scholar
  3. 3.
    Krueger FH (1989) Partial discharge detection in high voltage equipment. Butterworth-Heinemann, OxfordGoogle Scholar
  4. 4.
    Kuffel E, Zaengl WS, Kuffel J (2000) High voltage engineering: fundamentals, 2d edn. Butterworth-Heinemann, OxfordGoogle Scholar
  5. 5.
    Diaz J, Casanovas AM, Casanovas J (2003) Effect of the percentage of SF6 (100–10–5 %) on the decomposition of SF6–N2 mixtures under negative dc coronas in the presence of water vapour or oxygen. J Phys D Appl Phys 36:1558–1564CrossRefGoogle Scholar
  6. 6.
    Casanovas AM, Coll I, Pradayrol C, Casanovas J (1998) Influence of a solid insulator on the spark decomposition of SF6 and 50 % SF6 + 50 % CF4 mixtures. J Phys D Appl Phys 31:2835–2845CrossRefGoogle Scholar
  7. 7.
    Pradayrol C, Casanovas AM, Aventin C, Casanovas J (1997) Production of SO2F2, SOF4, (SOF2 + SF4), S2F10, S2OF10 and S2O2F10 in SF6 and (50–50) SF6–CF4 mixtures exposed to negative coronas. J Phys D Appl Phys 30:1356–1369CrossRefGoogle Scholar
  8. 8.
    Griffin GD, Sauers I, Christophorou LG, Easterly CE, Walsh PJ (1983) On the toxicity of sparked SF6. IEEE Trans Electr Insul EI-18:551–552CrossRefGoogle Scholar
  9. 9.
    Griffin GD, Nolan MG, Easterly CE, Sauers I, Votaw PC (1990) Concerning biological effects of spark-decomposed SF6. IEE Proc (Pt. A) 137:221–227Google Scholar
  10. 10.
    James DR, Sauers I, Griffin GD, Van Brunt RJ, Olthoff JK, Stricklett KL, Chu FY, Robins JR, Morrison HD (1993) Investigation of S2F10 production and mitigation in compressed SF6 insulated power systems. IEEE Electr Insul Mag 9(3):29–40CrossRefGoogle Scholar
  11. 11.
    Dervos CT, Vassiliou P (2000) Sulfur hexafluoride (SF6): global environmental effects and toxic byproduct formation. J Air Waste Manage Assoc 50:137–141CrossRefGoogle Scholar
  12. 12.
    Shih M, Lee WJ, Tsai CH, Tsai PJ, Chen CY (2002) Decomposition of SF6 in an RF plasma environment. J Air Waste Manage Assoc 52:1274–1280CrossRefGoogle Scholar
  13. 13.
    Lee HM, Chang MB, Wu KY (2004) Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas. J Air Waste Manage Assoc 54:960–970CrossRefGoogle Scholar
  14. 14.
    Wang WF, Shih M, Tsai CH, Tsai PJ (2006) Total toxicity equivalents emissions of SF6, CHF3, and CCl2F2 decomposed in a RF plasma environment. Chemosphere 62:1681–1688CrossRefGoogle Scholar
  15. 15.
    Luly MH, Singh RR and Richard RG (2010) Compositions containing sulfur hexafluoride and uses thereof. US Patent. US 2010/0171062 A1Google Scholar
  16. 16.
    Hodnebrog ∅, Etminan M, Fuglestvedt JS, Marston G, Myhre G, Nielsen CJ, Shine KP, Wallington TJ (2013) Global warming potentials and radiative efficiencies of halocarbons and related compounds: a comprehensive review. Rev Geophys 51:300–378CrossRefGoogle Scholar
  17. 17.
    Lallier J-P, Rastelletti E Compositions based on fluorinated hydrocarbons and secondary butanol for defluxing electronic boards. EP 1 678 288 B1. Intern Publ number: WO 2005/026310Google Scholar
  18. 18.
    Taniguchi N, Wallington TJ, Hurley MD, Guschin AG, Molina LT, Molina MJ (2003) Atmospheric chemistry of C2F5C(O)CF(CF3)2: photolysis and reaction with Cl atoms, OH radicals, and ozone. J Phys Chem A 107:2674–2679CrossRefGoogle Scholar
  19. 19.
    Kogelschatz U (2002) Filamentary, patterned and diffuse barrier discharges. IEEE Trans Plasma Sci 30:1400–1408CrossRefGoogle Scholar
  20. 20.
    Kogelschatz U, Eliasson B, Egli W (1997) Dielectric-barrier discharges. Principle and applications. J Phys IV FRANCE 7(C4):47–66CrossRefGoogle Scholar
  21. 21.
    Siliprandi RA, Roman HE, Barni R, Riccardi C (2008) Characterization of the streamer regime in dielectric barrier discharges. J Appl Phys 104:063309CrossRefGoogle Scholar
  22. 22.
    Gibalov VI, Pietsch GJ (2000) The development of dielectric barrier discharges in gas gaps and on surfaces. J Phys D Appl Phys 33:2618–2636CrossRefGoogle Scholar
  23. 23.
    Kaptsov NA (1950) The electric phenomena in gases and vacuum. Gostekhizdat, Moscow (in Russian) Google Scholar
  24. 24.
    Mraihi A, Merbahi N, Yousfi M, Abahaze’e’m A, Eichwald O (2011) Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure. Plasma Sourc Sci Technol 20:065002CrossRefGoogle Scholar
  25. 25.
    Antao DS, Staack DA, Fridman A, Farouk B (2009) Atmospheric pressure dc corona discharges: operating regimes and potential applications. Plasma Sources Sci&Technol 18:035016CrossRefGoogle Scholar
  26. 26.
    Grabowski LR, van Veldhuizeen EM, Rutgers WR (2005) Removal of phenol from water: a comparison of energization methods. J Adv Oxid Technol 8:142–149Google Scholar
  27. 27.
    Penetrante BM, Hsiao MC, Merritt BT, Vogtlin GE, Wallman PH (1995) Comparison of electrical discharge techniques for nonthermal plasma processing of NO in N2. IEEE Trans Plasma Sci 23:679–687CrossRefGoogle Scholar
  28. 28.
    Rosocha LA, Korzeekwa RA (1999) Advanced oxidation and reduction processes in the gas phase using nonthermal plasmas. J Adv Oxid Technol 4:247–264Google Scholar
  29. 29.
    Kim Y, Kang WS, Park JM, Hong SH, Song Y-H, Kim SJ (2004) Experimental and numerical analysis of streamers in pulsed corona and dielectric barrier discharges. IEEE Trans Plasma Sci 32:18–24CrossRefGoogle Scholar
  30. 30.
    Pek´arek S (2012) Experimental study of surface dielectric barrier discharge in air and its ozone production. J Phys D Appl Phys 45:075201CrossRefGoogle Scholar
  31. 31.
    Kogelschatz U (2003) Dielectric-barrier discharges. Their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46CrossRefGoogle Scholar
  32. 32.
    Tatarinov AV, Shakhatov VA, Bilera IV, Avtaeva SV (2015) Comparative studies of decomposition of trans-1,3,3,3-tetrafluoropropene, 2,3,3,3-tetrafluoropropene, perfluoro-(3-methylbutan-2-on) and sulfur hexafluoride in the barrier discharge. High Energy Chem (accepted for publishing)Google Scholar
  33. 33.
    Clayton JW (1967) Fluorocarbon toxity and biological action. Fluorine Chem Rev 1:197–242Google Scholar
  34. 34.
    Clayton JW (1977) Toxicology of the fluoroalkanes: review and research needs. Env Health Persp 21:255–267CrossRefGoogle Scholar
  35. 35.
    Prockop LD, Chichkova RI (2007) Carbon monoxide intoxication: an updated review. J Neurological Sci 262:122–130CrossRefGoogle Scholar
  36. 36.
    Brock WJ (1999) Hydrogen fluoride: how toxic is toxic? A hazard and risk analysis. In: Halon Options Technical Working Conference pp 559–566Google Scholar
  37. 37.
    Samoylovich VG, Gibalov VI, Kozlov KV (1989) Physical chemistry of the barrier discharge. MSU Publishing House, Moscow (in Russian) Google Scholar
  38. 38.
    Avtaeva S (2011) Barrier discharge. Research and application. LAP Lambert Academic Publishing GmbH & Co. KG, Saarbrücken (in Russian) Google Scholar
  39. 39.
    Ogata A, Kim H-H, Futamura S, Mizuno K (2004) Effects of catalysts and additives on fluorocarbon removal with surface discharge plasma. Appl Catal B Environ 53:175–180CrossRefGoogle Scholar
  40. 40.
    Takahashi K, Hori M, Goto T (1996) Fluorocarbon radicals and surface reactions in fluorocarbon high density etching plasma. I. O2 addition to electron cyclotron resonance plasma employing CHF3. J Vac Sci Technol, A 14:2004–2010CrossRefGoogle Scholar
  41. 41.
    Spiess FJ, Chen X, Brock SL, Suib SL, Hayashi Y, Matsumoto H (2000) Destruction of Freons by the use of high-voltage glow plasmas. J Phys Chem A 104:11111–11120CrossRefGoogle Scholar
  42. 42.
    Mok YS, Demidyuk V, Whitehead JC (2008) Decomposition of hydrofluorocarbons in dielectric-packed plasma reactor. J Phys Chem A 112:6586–6591CrossRefGoogle Scholar
  43. 43.
    van Zant P (2000) Microchip fabrication: a practical guide to semiconductor processing, 4th edn. McGraw Hill Books, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. V. Tatarinov
    • 1
  • I. V. Bilera
    • 1
  • S. V. Avtaeva
    • 2
  • V. A. Shakhatov
    • 1
  • P. V. Solomakhin
    • 3
  • R. Maladen
    • 4
  • C. Prévé
    • 4
  • D. Piccoz
    • 5
  1. 1.A.V. Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.ZAO Schneider ElectricMoscowRussia
  4. 4.Shneider Electric Industries SASVarces Allières et RissetFrance
  5. 5.Shneider Electric Industries SASMâcon Cedex 9France

Personalised recommendations