Plasma Chemistry and Plasma Processing

, Volume 35, Issue 4, pp 739–755 | Cite as

Hydrophobic–Hydrophilic Character of Hexamethyldisiloxane Films Polymerized by Atmospheric Pressure Plasma Jet

  • M. Bashir
  • S. Bashir
Original Paper


This paper reports on polymerization of hexamethyldisiloxane (HMDSO) using an atmospheric pressure dielectric barrier discharge plasma jet. The aim of the study is to contribute to the knowledge of thin film deposition using a low cost technique of atmospheric pressure plasma. The monomer HMDSO was used as a precursor for polymerization. The discharge was powered using a laboratory made resonant power supply working with sinusoidal voltage signal at a frequency of 8 kHz. The coatings were characterized using Fourier transform infrared spectroscopy, atomic force microscopy, growth rates and surface free energy measurements. The hydrophobic nature of the films was found to be decreased with increasing the plasma power. Fourier transform infrared spectroscopy gave an indication of the dominated inorganic content of the surface at higher discharge. An average growth rate of 220 nm min−1 was achieved at a monomer flow rate of 5 sccm and discharge power of 12.5 W. The films obtained using plasma jet were found to be stable in aqueous media and well adhered with substrate.


Atmospheric pressure plasma jet Glass substrate Polymerization Surface properties 



M.B. would like to acknowledge the Higher Education Commission of Pakistan for financial support through its IPFP program.


  1. 1.
    Fang J, Chen H, Yu X (2001) Studies on plasma polymerization of hexamethyldisiloxane in the presence of different carrier gases. J Appl Polym Sci 80:1434–1438CrossRefGoogle Scholar
  2. 2.
    Asandulesa M, Topala I, Pohoata V, Dumitrascu N (2000) Influence of operational parameters on plasma polymerization process at atmospheric pressure. J Appl Phys 108:093310–093315CrossRefGoogle Scholar
  3. 3.
    Bashir M, Rees JM, Zimmerman WB (2013) Plasma polymerization in a microcapillary using an atmospheric pressure dielectric barrier discharge. Surf Coat Technol 234:82–91CrossRefGoogle Scholar
  4. 4.
    Bradley JW, Oh J-S, Olabanji OT, Hale C, Mariani R, Kontis K (2011) Schlieren photography of the outflow from a plasma jet. IEEE T Plasma Sci 39:2312–2313CrossRefGoogle Scholar
  5. 5.
    Goldman M, Goldman A, Sigmond RS (1985) The corona discharge, its properties and specific uses. Pure Appl Chem 57:1353–1362Google Scholar
  6. 6.
    Bashir M, Bashir S, Rees JM, Zimmerman WB (2014) Surface coating of bonded PDMS microchannels by atmospheric pressure microplasma. Plasma Process Polym 11:279–288CrossRefGoogle Scholar
  7. 7.
    Luo HL, Sheng J, Wan YZ (2007) Plasma polymerization of styrene with carbon dioxide under glow discharge conditions. Appl Surf Sci 253:5203–5207CrossRefGoogle Scholar
  8. 8.
    Hayakawa T, Yoshinari M, Nemoto K (2004) Characterization and protein-adsorption behavior of deposited organic thin film onto titanium by plasma polymerization with hexamethyldisiloxane. Biomaterials 25:119–127CrossRefGoogle Scholar
  9. 9.
    Yasuda H (1984) Plasma polymerization for protective coatings and membranes. J Membr Sci 18:273–284CrossRefGoogle Scholar
  10. 10.
    Muguruma H, Hiratsuka A, Karube I (2000) Thin-film glucose biosensor based on plasma-polymerized film: simple design for mass production. Anal Chem 72:2671–2675CrossRefGoogle Scholar
  11. 11.
    Homma T, Yamaguchi M, Kutsuzama Y, Otstuka N (1999) Electrical stability of polyimide siloxane films for interlayer dielectrics in multilevel interconnections. Thin Solid Films 340:237–241CrossRefGoogle Scholar
  12. 12.
    Yeo S, Kwon T, Choi C, Park H, Hyun JW, Jung D (2006) The patterned hydrophilic surfaces of glass slides to be applicable for the construction of protein chips. Curr Appl Phys 6:267–270CrossRefGoogle Scholar
  13. 13.
    Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M (2009) Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater 4:045002–045008CrossRefGoogle Scholar
  14. 14.
    Twomey B, Rahman M, Byrne G, Hynes A, OHare L-A, ONeill L, Dowling D (2008) Effect of plasma exposure on the chemistry and morphology of aerosol-assisted, plasma-deposited coatings. Plasma Process Polym 5:737–744CrossRefGoogle Scholar
  15. 15.
    Raballand V, Benedikt J, von Keudell A (2008) Deposition of carbon-free silicon dioxide from pure hexamethyldisiloxane using an atmospheric microplasma jet. Appl Phys Lett 92:091502–091504CrossRefGoogle Scholar
  16. 16.
    Massines F, Gherardi N, Fornelli A, Martin S (2005) Atmospheric pressure plasma deposition of thin films by Townsend dielectric barrier discharge. Surf Coat Tech 200:1855–1861CrossRefGoogle Scholar
  17. 17.
    Kriegseis J, Moller B, Grundmann S, Tropea C (2011) Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. J Electrostat 69:302–312CrossRefGoogle Scholar
  18. 18.
    Manley TC (1943) The electric characteristics of the ozonator discharge. J Electrochem Soc 84:83–96CrossRefGoogle Scholar
  19. 19.
    Bashir M, Rees JM, Bashir S, Zimmerman WB (2014) Characterization of atmospheric pressure microplasma produced from argon and a mixture of argon-ethylenediamine. Phys Lett A 378:2395–2405CrossRefGoogle Scholar
  20. 20.
    Nagao I, Nishida M, Yukimura K, Kambara S, Maruyama T (2002) NOx removal using nitrogen gas activated by dielectric barrier discharge at atmospheric pressure. Vacuum 65:481–487CrossRefGoogle Scholar
  21. 21.
    Gibalov VI, Pietsch GJ (2000) The development of dielectric barrier discharges in gas gaps and on surfaces. J Phys D Appl Phys 33(20):2618CrossRefGoogle Scholar
  22. 22.
    Reddy EL, Biju VM, Subrahmanyam Ch (2012) Production of hydrogen from hydrogen sulfide assisted by dielectric barrier discharge. Int J Hydrogen Energy 37:2204–2209CrossRefGoogle Scholar
  23. 23.
    Kale KH, Palaskar S (2010) Atmospheric pressure plasma polymerization of hexamethyldisiloxane for imparting water repellency to cotton fabric. Text Res J 81:608–620CrossRefGoogle Scholar
  24. 24.
    Lee SH, Lee DC (1998) Preparation and characterization of thin films by plasma polymerization of hexamethyldisiloxane. Thin Solid Films 325:83–86CrossRefGoogle Scholar
  25. 25.
    Morent R, Geyter ND, Vlierberghe SV, Dubruel P, Leys C, Schacht E (2009) Organic-inorganic behaviour of HMDSO films plasma-polymerized at atmospheric pressure. Surf Coat Tech 203:1366–1372CrossRefGoogle Scholar
  26. 26.
    Lamendola R, d’ Agostino R, Fracassi F (1997) Thin film deposition from hexamethyldisiloxane fed glow discharges. Plasmas Polym 2:147–164CrossRefGoogle Scholar
  27. 27.
    Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRefGoogle Scholar
  28. 28.
    Pelagade SM, Singh NL, Rane RS, Mukherjee S, Deshpande UP, Ganesan V, Shripathi T (2012) Investigation of surface free energy for PTFE polymer by bipolar argon plasma treatment. JSEMAT 2:132–136CrossRefGoogle Scholar
  29. 29.
    Zenkiewicz M (2001) Wettability and surface free energy of corona-treated biaxially-oriented polypropylene. J Adhes Sci Technol 15(14):1769–1785CrossRefGoogle Scholar
  30. 30.
    Berthier J, Silberzan P (2006) Microfluidics for biotechnology, 1st edn. Artech house, LondonGoogle Scholar
  31. 31.
    Wenzel RN (1949) Surface roughness and contact angle. J Phys Chem 53:1466–1467CrossRefGoogle Scholar
  32. 32.
    Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994CrossRefGoogle Scholar
  33. 33.
    Cassie DAB, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRefGoogle Scholar
  34. 34.
    Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—a review. Plasma Process Polym 3:392–418CrossRefGoogle Scholar
  35. 35.
    Lopez-Barrea JA, Pimentel-Tinoco OG, Olayo-Valles R, Morales-Corona J, Olayo R (2014) Water permeability of quarry stone superficially modified by plasma polymerization of hexamethyldisiloxane at atmospheric pressure. J Coat Tech Res 11:661–664CrossRefGoogle Scholar
  36. 36.
    Levasseur O, Stafford L, Gherardi N, Naude N, Blanchard V, Blanchet P, Riedl B, Sarkissian A (2012) Deposition of hydrophobic functional groups on wood surfaces using atmospheric-pressure dielectric barrier discharge in helium-hexamethyldisiloxane gas mixtures. Plasma Process Polym 9:1168–1175CrossRefGoogle Scholar
  37. 37.
    Ji Y-Y, Kim S-S, Kwon O-P, Lee S-H (2009) Easy fabrication of large-size superhydrophobic surfaces by atmospheric pressure plasma polymerization with non-polar aromatic hydrocarbon in an in-line process. Appl Surf Sci 255:4575–4578CrossRefGoogle Scholar
  38. 38.
    Foest R, Kindel E, Lange H, Ohl A, Stieber M, Weltmann K-D (2007) RF capillary jet—a tool for localized surface treatment. Contrib Plasma Phys 47:119–128CrossRefGoogle Scholar
  39. 39.
    Trunec D, Navratil Z, Stahel P, Zajickova L, Bursikova V, Cech J (2004) Deposition of thin organosilicon polymer films in atmospheric pressure glow discharge. J Phys D Appl Phys 37:2112–2120CrossRefGoogle Scholar
  40. 40.
    Sira M, Trunec D, Stahel P, Bursikova V, Navratil Z (2008) Surface modification of polycarbonate in homogeneous atmospheric pressure discharge. J Phys D Appl Phys 41:015205–015212CrossRefGoogle Scholar
  41. 41.
    Han MH, Noh JH, Lee TJ, Choi JH, Park KW, Hwang HS, Song KM, Baik HK (2008) High-rate SiO2 deposition by oxygen cold arc plasma jet at atmospheric pressure. Plasma Process Polym 5:861–866CrossRefGoogle Scholar
  42. 42.
    Zhu X, Arefi-Khonsari F, Petit-Etienne C, Tatoulian M (2005) Open air deposition of SiO2 films by an atmospheric pressure line-shaped plasma. Plasma Process Polym 2:407–413CrossRefGoogle Scholar
  43. 43.
    Yasuda H (1985) Plasma polymerization. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsCOMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Department of Physics and Applied MathematicsPakistan Institute of Engineering and Applied SciencesIslamabadPakistan

Personalised recommendations