Plasma Chemistry and Plasma Processing

, Volume 34, Issue 4, pp 853–869 | Cite as

Schlieren High-Speed Imaging of a Nanosecond Pulsed Atmospheric Pressure Non-equilibrium Plasma Jet

  • M. Boselli
  • V. ColomboEmail author
  • E. Ghedini
  • M. Gherardi
  • R. Laurita
  • A. Liguori
  • P. Sanibondi
  • A. Stancampiano
Original Paper


The fluid-dynamic characterization by means of Schlieren high-speed imaging of the effluent region of a single electrode plasma jet is presented. The plasma source is powered by a high-voltage generator producing pulses with nanosecond rise time. Time evolution of fluctuations generated in a free flow regime and when the jet is impinging on substrates of different geometries (plain substrates, Petri dishes, etc.) and materials (metal, dielectric covered metal, polystyrene) has been investigated. Plasma ignition causes fluid-dynamic instabilities moving in the direction of the jet flow and correlated with the high-voltage pulses: for low pulse repetition frequency (PRF) (<125 Hz), the movement of the turbulent front between two voltage pulses can be tracked, whereas for higher PRF (1,000 Hz) the flow is completely characterized by turbulent eddies in the effluent region, without relevant changes between subsequent voltage pulses. When the jet is impinging on a substrate, turbulent fronts propagate over the surface starting from the gas impinging zone.


Atmospheric pressure non-equilibrium plasma Schlieren High-speed imaging 



This work was partially supported by FP7 COST Action MP1101 “Biomedical Applications of Atmospheric Pressure Plasma Technology” and FP7 COST Action TD1208 “Electrical discharges with liquids for future applications”. The contribution of Silvano Dallavalle for the design of the plasma source is acknowledged.

Supplementary material

11090_2014_9537_MOESM1_ESM.mpg (1.1 mb)
Supplementary material 1 (MPG 1164 kb)
11090_2014_9537_MOESM2_ESM.mpg (1.5 mb)
Supplementary material 2 (MPG 1552 kb)
11090_2014_9537_MOESM3_ESM.mpg (1.4 mb)
Supplementary material 3 (MPG 1402 kb)

Supplementary material 4 (MPG 568 kb)

11090_2014_9537_MOESM5_ESM.mpg (1.3 mb)
Supplementary material 5 (MPG 1324 kb)

Supplementary material 6 (MPG 1406 kb)


  1. 1.
    Ito Y, Urabe K, Takano N, Tachibana K (2008) Appl Phys Express 1:067009CrossRefGoogle Scholar
  2. 2.
    Olabanji OT, Bradley JW (2012) Plasma Process Polym 9:929–936CrossRefGoogle Scholar
  3. 3.
    Nastuta AV, Topala I, Grigoras C, Pohoata V, Popa G (2011) J Phys D Appl Phys 44:105204CrossRefGoogle Scholar
  4. 4.
    Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Plasma Process Polym 5:503–533CrossRefGoogle Scholar
  5. 5.
    Colombo V, Fabiani D, Focarete ML, Ghedini E, Gherardi M, Gualandi C, Laurita R, Sanibondi P, Zaccaria M (2013). In: Proceedings of the 11th IEEE international conference on solid dielectrics—ICSD 11, Bologna, Italy, June 30–July 4, 2013Google Scholar
  6. 6.
    Weltmann KD, Kindel E, Brandenburg R, Meyer C, Bussiahn R, Wilke C, von Woedtke T (2009) Contrib Plasma Phys 49:631–640CrossRefGoogle Scholar
  7. 7.
    O’Neill FT, Twomey B, Law VJ, Milosavljevic V, Kong M, Anghel SD, Dowling D (2012) IEEE Trans Plasma Sci 40:2994–3002CrossRefGoogle Scholar
  8. 8.
    Deng XL, Nikiforov AY, Vanraes P, Leys C (2013) J Appl Phys 113:023305CrossRefGoogle Scholar
  9. 9.
    Xiong Q, Nikiforov AY, Li L, Vanraes P, Britun N, Snyders R, Lu XP, Leys C (2012) Eur Phys J D 66:281CrossRefGoogle Scholar
  10. 10.
    Hong Y, Lu N, Pan J, Li J, Wu Y, Shang KF (2013) J Electrost 71:93–101CrossRefGoogle Scholar
  11. 11.
    van Gessel AFH, Hrycak B, Jasinski M, Mizeraczyk J, van der Mullen JJAM, Bruggeman PJ (2013) J Phys D Appl Phys 46:095201CrossRefGoogle Scholar
  12. 12.
    Xiong Q, Nikiforov AY, Gonzalez MA, Leys C, Lu XP (2013) Plasma Sources Sci Technol 22:015011CrossRefGoogle Scholar
  13. 13.
    Boselli M, Colombo V, Ghedini E, Gherardi M, Laurita R, Liguori A, Marani F, Sanibondi P, Stancampiano A (2013). In: Proceedings of 21st international symposium on plasma chemistry—ISPC21, Cairns, Australia, 4–9 August 2013Google Scholar
  14. 14.
    Shao T, Long K, Zhang C, Yan P, Zhang S (2008) J Phys D Appl Phys 41:215203CrossRefGoogle Scholar
  15. 15.
    Ayan H, Fridman G, Gutsol AF, Vasilets VN, Fridman A, Friedman G (2008) IEEE Trans Plasma Sci 36:504–508CrossRefGoogle Scholar
  16. 16.
    Oh JS, Olabanji OT, Hale C, Mariani R, Kontis K, Bradley JW (2011) J Phys D Appl Phys 44:155206CrossRefGoogle Scholar
  17. 17.
    Lu X, Laroussi M, Puech V (2012) Plasma Sources Sci Technol 21:034005CrossRefGoogle Scholar
  18. 18.
    Colombo V, Fabiani D, Focarete ML, Gherardi M, Gualandi C, Laurita R, Zaccaria M (2014) Plasma Process Polym. doi: 10.1002/ppap.201300141 Google Scholar
  19. 19.
    Ungate CD, Harleman DR, Jirka GH (1975) Stability and mixing of submerged turbulent jets at low Reynolds numbers, MIT Energy LabGoogle Scholar
  20. 20.
    Folletto M, Douat C, Fontane J, Joly L, Pitchford L, Puech V (2013). In: Proceedings of 31th international conference on phenomena in ionized gases—ICPIG, Granada, Spain, 14–19 July 2013Google Scholar
  21. 21.
    Ghasemi M, Olszewski P, Bradley JW, Walsh JL (2013) J Phys D Appl Phys 46:052001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. Boselli
    • 2
  • V. Colombo
    • 1
    • 2
    Email author
  • E. Ghedini
    • 1
    • 2
  • M. Gherardi
    • 1
  • R. Laurita
    • 1
  • A. Liguori
    • 1
  • P. Sanibondi
    • 1
  • A. Stancampiano
    • 1
  1. 1.Department of Industrial Engineering (DIN)Alma Mater Studiorum-Università di BolognaBolognaItaly
  2. 2.Industrial Research Centre for Advanced Mechanics and Materials (C.I.R.I.-M.A.M.)Alma Mater Studiorum-Università di BolognaBolognaItaly

Personalised recommendations