Plasma Chemistry and Plasma Processing

, Volume 34, Issue 4, pp 871–886 | Cite as

Coupled Sliding Discharges: A Scalable Nonthermal Plasma System Utilizing Positive and Negative Streamers on Opposite Sides of a Dielectric Layer

  • Muhammad Arif Malik
  • Chunqi Jiang
  • Shirshak K. Dhali
  • Richard Heller
  • Karl H. Schoenbach
Original Paper

Abstract

A nonthermal plasma system based on simultaneously formed positive and negative streamers on either side of a dielectric layer is described. The coupled sliding discharge (CSD) reactor based on this concept was found to be scalable by stacking and operating multiple electrode assemblies in parallel, similarly to the shielded sliding discharge (SSD) reactor reported earlier. A comparison of the two systems showed that although the energy density in the CSD reactor was lower, the efficiency for NO conversion and ozone synthesis from dry air were significantly higher. The energy cost for 50 % NO removal was ~30 eV/molecule compared to ~60 eV/molecule in the case of the SSD under the same conditions of 330 ppm initial NO concentration in air. The energy cost decreased to ~12 eV/molecule in both cases when NO was mixed with plasma-activated air at the outlet of the reactor to utilize ozone for NO conversion i.e., indirect plasma treatment. The energy yield for ozone generation from dry air was at ~70 g/kWh, comparable in both systems. The results show that the concept of a CSD, as that of SSDs, allows the construction of compact, efficient plasma reactors.

Keywords

Coupled sliding discharges Shielded sliding discharges Nanosecond discharges Nonthermal plasma Nitric oxide Ozone 

References

  1. 1.
    Malik MA, Malik SA (1999) Catalyst enhanced oxidation of VOCs and methane in cold-plasma reactors. Platin Met Rev 43:109–113Google Scholar
  2. 2.
    Petitpas G, Rollier JD, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L (2007) A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrogen Energy 32:2848–2867CrossRefGoogle Scholar
  3. 3.
    Chen HL, Lee HM, Chen SH, Chao Y, Chang MB (2008) Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration, and prospects. Appl Catal B Environ 85:1–9CrossRefGoogle Scholar
  4. 4.
    Nunez CM, Ramsey GH, Ponder WH, Abbott JH, Hamel LE, Kariher PH (1993) Corona destruction: an innovative control technology for VOCs and air toxics. Air Waste 43:242–247CrossRefGoogle Scholar
  5. 5.
    Yamamoto T, Ramanathan K, Lawless PA, Ensor DS, Newsome JR, Plaks N, Ramsey GH (1992) Control of volatile organic compounds by an ac energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE Trans Ind Appl 28:528–534CrossRefGoogle Scholar
  6. 6.
    Malik MA, Malik SA (1999) Pulsed corona discharges and their applications in toxic VOCs abatement. Chin J Chem Eng 7:351–362Google Scholar
  7. 7.
    Vandenbroucke AM, Morent R, Geyter ND, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54CrossRefGoogle Scholar
  8. 8.
    Okubo M, Kametaka H, Yoshida K, Yamamoto T (2007) Odor removal characteristics of barrier-type packed-bed nonthermal plasma reactor. Jpn J Appl Phys 46:5288–5293CrossRefGoogle Scholar
  9. 9.
    Wintenberg KK, Sherman DM, Tsai PPY, Gadri RB, Karakaya F, Chen Z, Roth JR, Montie TC (2000) Air filter sterilization using a one atmosphere uniform glow discharge plasma (the volfilter). IEEE Trans Plasma Sci 28:64–71CrossRefGoogle Scholar
  10. 10.
    Nishikawa K, Nojima H (2003) Airborn virus inactivation technology using cluster ions generated by discharge plasma. Sharp Tech J 86:10–15Google Scholar
  11. 11.
    Vaze ND, Gallagher MJ, Park S, Fridman G, Vasilets VN, Gutsol AF, Anandan S, Friedman G, Fridman AA (2010) Inactivation of bacteria in flight by direct exposure to nonthermal plasma. IEEE Trans Plasma Sci 38:3234–3240CrossRefGoogle Scholar
  12. 12.
    Agrawal SR, Kim HJ, Lee YW, Sohn JH, Lee JH, Kim YJ, Lee SH, Hong CS, Park JW (2010) Effect of an air cleaner with electrostatic filter on the removal of airborne house dust mite allergens. Yonsei Med J 51:918–923CrossRefGoogle Scholar
  13. 13.
    Masuda S, Hirano M, Akutsu K (1981) Enhancement of electron beam denitrization process by means of electric field. Radiat Phys Chem 17:223–228Google Scholar
  14. 14.
    Mizuno A, Clements JS, Davis RH (1986) A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization. IEEE Trans Ind Appl IA-22:516–522CrossRefGoogle Scholar
  15. 15.
    Clements JS, Mizuno A, Finney WC, Davis RH (1989) Combined removal of SO2, NO, and fly ash from simulated flue gas using pulsed streamer corona. IEEE Trans Ind Appl 25:62–69CrossRefGoogle Scholar
  16. 16.
    Masuda S, Hosokawa S, Tu X, Wang Z (1995) Novel plasma chemical technologies—PPCP and SPCP for control of gaseous pollutants and air toxics. J Electrost 34:415–438CrossRefGoogle Scholar
  17. 17.
    Cho BK, Lee J-H, Crellin CC, Olsona KL, Hilden DL, Kim MK, Kim PS, Heo I, Oh SH, Nam I-S (2012) Selective catalytic reduction of NOx by diesel fuel: plasma-assisted HC/SCR system. Catal Today 191:20–24CrossRefGoogle Scholar
  18. 18.
    Lee DH, Lee JO, Kim KT, Song YH, Kim E, Han HS (2012) Hydrogen in plasma-assisted hydrocarbon selective catalytic reduction. Int J Hydrogen Energy 37:3225–3233CrossRefGoogle Scholar
  19. 19.
    Dinelli G, Civitano L, Rea M (1990) Industrial experiments on pulse corona simultaneous removal of NOx and SO2 from flue gas. IEEE Trans Ind Appl 26:535–541CrossRefGoogle Scholar
  20. 20.
    Winands HGJJ, Yan K, Nair SA, Pemen GAJM, van Heesch BEJM (2005) Evaluation of corona plasma techniques for industrial applications: HPPS and DC/AC systems. Plasma Process Polym 2:232–237CrossRefGoogle Scholar
  21. 21.
    Mizuno A (2007) Industrial applications of atmospheric non-thermal plasma in environmental remediation. Plasma Phys Control Fusion 49:A1–A15CrossRefGoogle Scholar
  22. 22.
    Akiyama H, Sakugawa T, Namihira T, Takaki K, Minamitani Y, Shimomura N (2007) Industrial applications of pulsed power technology. IEEE Trans Dielecrt Electr Insul 14:1051–1064CrossRefGoogle Scholar
  23. 23.
    Beckers FJCM, Hoeben WFLM, Huiskamp T, Pemen AJM, van Heesch EJM (2013) Pulsed corona demonstrator for semi-industrial scale air purification. IEEE Trans Plasma Sci 41:2920–2925CrossRefGoogle Scholar
  24. 24.
    Malik MA, Minamitani Y, Schoenbach KH (2005) Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor. IEEE Trans Plasma Sci 33:50–56CrossRefGoogle Scholar
  25. 25.
    Malik MA, Kolb JF, Sun Y, Schoenbach KH (2011) Comparative study of NO removal in surface-plasma and volume-plasma reactors based on pulsed corona discharges. J Hazard Mater 197:220–228CrossRefGoogle Scholar
  26. 26.
    Malik MA, Xiao S, Schoenbach KH (2012) Scaling of surface-plasma reactors with a significantly increased energy density for NO conversion. J Hazard Mater 209–210:293–298CrossRefGoogle Scholar
  27. 27.
    Schoenbach KH, Malik MA (2014) Scaling of shielded sliding discharges for environmental applications. Plasma Chem Plasma Process 34:39–54CrossRefGoogle Scholar
  28. 28.
    Malik MA, Schoenbach KH (2014) Nitric oxide conversion and ozone synthesis in a shielded sliding discharge reactor with positive and negative streamers. Plasma Chem Plasma Process 34:93–109CrossRefGoogle Scholar
  29. 29.
    Tsikrikas GN, Serafetinides AA (1996) The effect of voltage pulse polarity on the performance of a sliding discharge pumped HF laser. J Phys D Appl Phys 29:2806–2810CrossRefGoogle Scholar
  30. 30.
    Furmanski J, Kim JY, Kim SO (2011) Triple-coupled intense atmospheric pressure plasma jet from honeycomb structural plasma device. IEEE Trans Plasma Sci 39:2338–2339CrossRefGoogle Scholar
  31. 31.
    Ghasemi M, Olszewski P, Bradley JW, Walsh JL (2013) Interaction of multiple plasma plumes in an atmospheric pressure plasma jet array. J Phys D Appl Phys 46:052001CrossRefGoogle Scholar
  32. 32.
    Kogelschatz U, Eliasson B, Hirth M (1988) Ozone generation from oxygen and air: discharge physics and reaction mechanisms. Ozone Sci Eng 10:367–377CrossRefGoogle Scholar
  33. 33.
    Sathiamoorthy G, Kalyana S, Finney CW, Clark RJ, Locke BR (1999) Chemical reaction kinetics and reactor modeling of NOx removal in a pulsed streamer corona discharge reactor. Ind Eng Chem Res 38:1844–1855CrossRefGoogle Scholar
  34. 34.
    Penetrante BM, Brusasco RM, Merritt BT, Vogtlin GE (1999) Environmental applications of low temperature plasmas. Pure Appl Chem 71:1829–1835CrossRefGoogle Scholar
  35. 35.
    Mok YS, Nam IS (2004) Reduction of nitrogen oxides by ozonization-catalysis hybrid process. Korean J Chem Eng 21:976–982CrossRefGoogle Scholar
  36. 36.
    Kuroki T, Fujishima H, Otsuka K, Ito T, Okubo M, Yamamoto T, Yoshida K (2008) Continuous operation of commercial-scale plasma–chemical aftertreatment system of smoke tube boiler emission with oxidation reduction potential and pH control. Thin Solid Films 516:6704–6709CrossRefGoogle Scholar
  37. 37.
    Barman S, Philip L (2006) Integrated system for the treatment of oxides of nitrogen from flue gases. Environ Sci Technol 40:1035–1041CrossRefGoogle Scholar
  38. 38.
    Stamate E, Irimiea C, Salewski M (2013) Investigation of NOx reduction by low temperature oxidation using ozone produced by dielectric barrier discharge. Jpn J Appl Phys 52:05EE03CrossRefGoogle Scholar
  39. 39.
    Okubo M, Fujishima H, Yamato Y, Kuroki T, Tanaka A, Otsuka K (2013) Towards ideal NOx and CO2 emission control technology for bio-oils combustion energy system using a plasma-chemical hybrid process. J Phys Conf Ser 418:012115CrossRefGoogle Scholar
  40. 40.
    Kim HH, Prieto G, Takashima K, Katsura S, Mizuno A (2002) Performance evaluation of discharge plasma process for gaseous pollutant removal. J Electrost 55:25–41CrossRefGoogle Scholar
  41. 41.
    Samaranayake WJM, Miyahara Y, Namihira T, Katsuki S, Sakugawa T, Hackam R, Akiyama H (2000) Pulsed streamer discharge characteristics of ozone production in dry air. IEEE Trans Dielecrt Electr Insul 7:254–260CrossRefGoogle Scholar
  42. 42.
    Simek M, Clupek M (2002) Efficiency of ozone production by pulsed positive corona discharge in synthetic air. J Phys D Appl Phys 35:1171–1175CrossRefGoogle Scholar
  43. 43.
    Huang W, Ren T, Xia W (2007) Ozone generation by hybrid discharge combined with catalysis. Ozone Sci Eng 29:107–112CrossRefGoogle Scholar
  44. 44.
    Buntat Z, Smith IR, Razali NA (2009) Ozone generation by pulsed streamer discharge in air. Appl Phys Res 1:2–10CrossRefGoogle Scholar
  45. 45.
    Pekarek S (2012) Experimental study of surface dielectric barrier discharge in air and its ozone production. J Phys D Appl Phys 45:075201CrossRefGoogle Scholar
  46. 46.
    Simek M, Pekarek S, Prukner V (2012) Ozone production using a power modulated surface dielectric barrier discharge in dry synthetic air. Plasma Chem Plasma Process 32:743–754CrossRefGoogle Scholar
  47. 47.
    van Heesch EJM, Winands GJJ, Pemen AJM (2008) Evaluation of pulsed streamer corona experiments to determine the O* radical yield. J Phys D Appl Phys 41:234015CrossRefGoogle Scholar
  48. 48.
    Sretenović GB, Obradović BM, Kovačević VV, Kuraica MM (2012) Pulsed corona discharge driven by Marx generator: diagnostics and optimization for NOx treatment. Curr Appl Phys 13:121–129CrossRefGoogle Scholar
  49. 49.
    Buntat Z, Smith IR, Razali NA (2009) Ozone generation using atmospheric pressure glow discharge in air. J Phys D Appl Phys 42:235202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Muhammad Arif Malik
    • 1
  • Chunqi Jiang
    • 1
    • 2
  • Shirshak K. Dhali
    • 2
  • Richard Heller
    • 1
  • Karl H. Schoenbach
    • 1
  1. 1.Frank Reidy Research Center for BioelectricsOld Dominion UniversityNorfolkUSA
  2. 2.Department of Electrical and Computer EngineeringOld Dominion UniversityNorfolkUSA

Personalised recommendations