Plasma Chemistry and Plasma Processing

, Volume 34, Issue 2, pp 327–341 | Cite as

Study of Microwave Torch Plasmachemical Synthesis of Iron Oxide Nanoparticles Focused on the Analysis of Phase Composition

Original Paper

Abstract

This work presents the results obtained on the single-step route towards the synthesis of iron oxide nanoparticles in a microwave plasma torch. The torch is supplied by 660 sccm of Ar mixed with 1 sccm of Fe(CO)5 and a variable amount of O2. The influence of oxygen addition on the phase composition of the synthesized powder was studied. Magnetite and maghemite phases could not be distinguished using the standard X-ray diffraction (XRD) analysis. Therefore, a combined XRD and Raman spectra analysis had to be applied, which is based on fitting of selected diffraction peaks and spectral features. According to XRD and Raman spectroscopy, the powder synthesized from Ar/Fe(CO)5 consisted about 50 % of magnetite, Fe3O4, the rest being α-Fe and FeO. An increase in oxygen flow rate led to an increase in γ-Fe2O3 percentage, at the expense of α-Fe, FeO and Fe3O4. Almost pure γ-Fe2O3 was synthesized at oxygen flow rates 25–75× higher than the flow rate of Fe(CO)5. A further increase in the oxygen flow rate led to α-Fe2O3 and ε-Fe2O3 production. The distributions of nanoparticles’ (NPs) diameters were obtained using transmission electron microscopy (TEM) and dynamic light scattering (DLS). The mean diameter of the NPs measured by TEM was 13 nm while the DLS measurements led to the mean diameter of 12 nm. About 90 % of all particles had the diameter in the range of 5–21 nm but a few larger particles were observed in TEM micrographs.

Keywords

Iron oxides Nanoparticles Plasmachemical synthesis Raman spectroscopy X-ray powder diffraction Microwave plasma 

Notes

Acknowledgments

This work was supported by the projects ‘CEITEC—Central European Institute of Technology’ (CZ.1.05/1.1.00/02.0068) from European Regional Development Fund, by the project P205/10/1374 of the Czech Science Foundation and ‘Employment of Newly Graduated Doctors of Science for Scientific Excellence’ (CZ.1.07/2.3.00/30.0009) co-financed from European Social Fund and the state budget of the Czech Republic. The authors would like to thank Dr. Dušan Hemzal for Raman spectroscopy measurements.

References

  1. 1.
    Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46CrossRefGoogle Scholar
  2. 2.
    Banerjee SS, Chen D-H (2009) A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Nanotechnology 20(18):185103CrossRefGoogle Scholar
  3. 3.
    Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRefGoogle Scholar
  4. 4.
    Dormann J, Spinu L, Tronc E, Jolivet J, Lucari F, D’Orazio F (1998) Effect of interparticle interactions on the dynamical properties of gamma-Fe2O3 nanoparticles. J Magn Magn Mater 183:L255–L260CrossRefGoogle Scholar
  5. 5.
    Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7:1–37CrossRefGoogle Scholar
  6. 6.
    Lu A-H, Salabas EL, Schueth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244CrossRefGoogle Scholar
  7. 7.
    Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11CrossRefGoogle Scholar
  8. 8.
    Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  9. 9.
    Zboril R, Machala L, Mashlan M, Sharma V (2004) Iron(III) oxide nanoparticles in the thermally induced oxidative decomposition of prussian blue, Fe(4)[Fe(CN)(6)](3). Cryst Growth Des 4:1317–1325CrossRefGoogle Scholar
  10. 10.
    Tronc E, Chaneac C, Jolivet J (1998) Structural and magnetic characterization of epsilon-Fe2O3. J Solid State Chem 139:93–104CrossRefGoogle Scholar
  11. 11.
    Jin J, Ohkoshi S, Hashimoto K (2004) Giant coercive field of nanometer-sized iron oxide. Adv Mater 16:48–51CrossRefGoogle Scholar
  12. 12.
    Namai A, Yoshikiyo M, Yamada K, Sakurai S, Goto T, Yoshida T, Miyazaki T, Nakajima M, Suemoto T, Tokoro H, Ohkoshi S-I (2012) Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation. Nat Commun 3:1035CrossRefGoogle Scholar
  13. 13.
    Tseng Y-C, Souza-Neto NM, Haskel D, Gich M, Frontera C, Roig A, van Veenendaal M, Nogues J (2009) Nonzero orbital moment in high coercivity epsilon-Fe2O3 and low-temperature collapse of the magnetocrystalline anisotropy. Phys Rev B 79:094404-1–094404-6Google Scholar
  14. 14.
    Kelm K, Mader W (2005) Synthesis and structural analysis of epsilon-Fe2O3. Z Anorg Allg Chem 631(12):2383–2389CrossRefGoogle Scholar
  15. 15.
    Kim W, Suh C-Y, Cho S-W, Roh K-M, Kwon H, Song K, Shon I-J (2012) A new method for the identification and quantification of magnetite and maghemite mixture using conventional X-ray diffraction technique. Talanta 94(0):348–352CrossRefGoogle Scholar
  16. 16.
    Makovec D, Campelj S, Bele M, Maver U, Zorko M, Drofenik M, Jamnik J, Gaberscek M (2009) Nanocomposites containing embedded superparamagnetic iron oxide nanoparticles and rhodamine 6G. Colloids Surf A Physicochem Eng Asp 334:74–79CrossRefGoogle Scholar
  17. 17.
    Woo K, Hong J, Choi S, Lee H, Ahn J, Kim C, Lee S (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16:2814–2818CrossRefGoogle Scholar
  18. 18.
    Balasubramanian S (1999) Synthesis, spectral studies, spin cross-over in mixed ligand complexes of iron(II) and the influence of solvent on magnetic behaviour. Synth React Inorg Met Org Chem 29:377–394CrossRefGoogle Scholar
  19. 19.
    Can MM, Ozcan S, Ceylan A, Firat T (2010) Effect of milling time on the synthesis of magnetite nanoparticles by wet milling. Mater Sci Eng B Adv Funct Solid State Mater 172:72–75CrossRefGoogle Scholar
  20. 20.
    Muerbe J, Rechtenbach A, Toepfer J (2008) Synthesis and physical characterization of magnetite nanoparticles for biomedical applications. Mater Chem Phys 110:426–433CrossRefGoogle Scholar
  21. 21.
    Kuivila C, Butt B, Stair P (1988) Cahracterization of surface species on iron synthesis catalysts by X-ray photoelectron-spectroscopy. Appl Surf Sci 32:99–121CrossRefGoogle Scholar
  22. 22.
    Darezereshki E, Ranjbar M, Bakhtiari F (2010) One-step synthesis of maghemite (γ-fe2o3) nano-particles by wet chemical method. J Alloy Compd 502(1):257–260CrossRefGoogle Scholar
  23. 23.
    kang Sun Y, Ma M, Zhang Y, Gu N (2004) Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf A Physicochem Eng Asp 245(13):15–19Google Scholar
  24. 24.
    Vidal-Vidal J, Rivas J, López-Quintela M (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surf A Physicochem Eng Asp 288(13):44–51CrossRefGoogle Scholar
  25. 25.
    Gupta A, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  26. 26.
    Hao Y, Teja A (2003) Continuous hydrothermal crystallization of alpha-Fe2O3 and Co3O4 nanoparticles. J Mater Res 18:415–422CrossRefGoogle Scholar
  27. 27.
    Sue K, Suzuki M, Arai K, Ohashi T, Ura H, Matsui K, Hakuta Y, Hayashi H, Watanabe M, Hiaki T (2006) Size-controlled synthesis of metal oxide nanoparticles with a flow-through supercritical water method. Green Chem 8(7):634–638CrossRefGoogle Scholar
  28. 28.
    Janzen C, Roth P (2001) Formation and characteristics of Fe2O3 nano-particles in doped low pressure H2/O2/Ar flames. Combust Flame 125:1150–1161CrossRefGoogle Scholar
  29. 29.
    Li D, Teoh WY, Selomulya C, Woodward RC, Munroe P, Amal R (2007) Insight into microstructural and magnetic properties of flame-made gamma-Fe2O3 nanoparticles. J Mater Chem 17(46):4876–4884CrossRefGoogle Scholar
  30. 30.
    Strobel R, Pratsinis SE (2009) Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv Powder Technol 20(2):190–194CrossRefGoogle Scholar
  31. 31.
    Pierson H (1999) Handbook of chemical vapor deposition: principles, technology and applications. Publications/William Andrew Noyes Publishing, New YorkGoogle Scholar
  32. 32.
    Mathur S, Barth S, Werner U, Hernandez-Ramirez F, Romano-Rodriguez A (2008) Chemical vapor growth of one-dimensional magnetite nanostructures. Adv Mater 20:1550–1554CrossRefGoogle Scholar
  33. 33.
    Yoshida T, Akashi K (1981) Preparation of ultrafine iron particles using an rf plasma. Trans Jpn Inst Met 22(6):371–378Google Scholar
  34. 34.
    Girshick S, Chiu C-P, Muno R, Wu C, Yang L, Singh S, McMurry P (1993) Thermal plasma synthesis of ultrafine iron particles. J Aerosol Sci 24(3):367–382CrossRefGoogle Scholar
  35. 35.
    Kouprine A, Gitzhofer F, Boulos M, Veres T (2006) Synthesis of ferromagnetic nanopowders from iron pentacarbonyl in capacitively coupled rf plasma. Carbon 44(13):2593–2601CrossRefGoogle Scholar
  36. 36.
    Panchal V, Neergat M, Bhandarkar U (2011) Synthesis and characterization of carbon coated nanoparticles produced by a continuous low-pressure plasma process. J Nanopart Res 13:3825–3833CrossRefGoogle Scholar
  37. 37.
    Panchal V, Lahoti G, Bhandarkar U, Neergat M (2011) The effects of process parameters on yield and properties of iron nanoparticles from ferrocene in a low-pressure plasma. J Phys D Appl Phys 44:345205CrossRefGoogle Scholar
  38. 38.
    Chou C, Phillips J (1992) Plasma produciton of metallic nanoparticles. J Mater Res 7:2107–2113CrossRefGoogle Scholar
  39. 39.
    Vollath D, Szabo D, Taylor R, Willis J, Sickafus K (1995) Synthesis and properties of nanocrystalline superparamagnetic gamma-Fe2O3. Nanostruct Mat 6(5–8):941–944CrossRefGoogle Scholar
  40. 40.
    Vollath D, Szabo D, Taylor R, Willis J (1997) Synthesis and magnetic properties of nanostructured maghemite. J Mater Res 12:2175–2182CrossRefGoogle Scholar
  41. 41.
    Kalyanaraman R, Yoo S, Krupashankara M, Sudarshan T, Dowding R (1998) Synthesis and consolidation of iron nanopowders. Nanostruct Mater 10(8):1379–1392CrossRefGoogle Scholar
  42. 42.
    Li S-Z, Hong YC, Uhm HS, Li Z-K (2004) Synthesis of nanocrystalline iron oxide particles by microwave plasma jet at atmospheric pressure. Jpn J Appl Phys 43(11A):7714–7717CrossRefGoogle Scholar
  43. 43.
    Bica I (1999) Nanoparticle production by plasma. Mater Sci Eng B Adv Funct Solid State Mater 68(1):5–9CrossRefGoogle Scholar
  44. 44.
    Banerjee I, Khollam Y, Balasubramanian C, Pasricha R, Bakare P, Patil K, Das A, Bhoraskar S (2006) Preparation of gamma-Fe2O3 nanoparticles using DC thermal arc-plasma route, their characterization and magnetic properties. Scr Mater 54:1235–1240CrossRefGoogle Scholar
  45. 45.
    Chazelas C, Coudert J, Jarrige J, Fauchais P (2006) Synthesis of ultra fine particles by plasma transferred arc: influence of anode material on particle properties. J Eur Ceram Soc 26(16):3499–3507CrossRefGoogle Scholar
  46. 46.
    Barankin MD, Creyghton Y, Schmidt-Ott A (2006) Synthesis of nanoparticles in an atmospheric pressure glow discharge. J Nanopart Res 8:511–517CrossRefGoogle Scholar
  47. 47.
    Synek P, Jašek O, Zajíčková L, David B, Kudrle V, Pizúrová N (2011) Plasmachemical synthesis of maghemite nanoparticles in atmospheric pressure microwave torch. Mater Lett 65:982–984CrossRefGoogle Scholar
  48. 48.
    Cornell R, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurences and uses, 2nd edn. Wiley, Hoboken, NJCrossRefGoogle Scholar
  49. 49.
    Qi WH, Wang MP, Su YC (2002) Size effect on the lattice parameters of nanoparticles. J Mater Sci Lett 21:877–878. doi: 10.1023/A:1015778729898 CrossRefGoogle Scholar
  50. 50.
    Qi W, Wang M (2005) Size and shape dependent lattice parameters of metallic nanoparticles. J Nanopart Res 7:51–57CrossRefGoogle Scholar
  51. 51.
    de Faria DLA, Venâncio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28(11):873–878CrossRefGoogle Scholar
  52. 52.
    Chourpa I, Douziech-Eyrolles L, Ngaboni-Okassa L, Fouquenet J, Cohen-Jonathan S, Souce M, Marchais H, Dubois P (2005) Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 130(10):1395–1403CrossRefGoogle Scholar
  53. 53.
    Wei X, Wei Z, Zhang L, Liu Y, He D (2011) Highly water-soluble nanocrystal powders of magnetite and maghemite coated with gluconic acid: preparation, structure characterization, and surface coordination. J Colloid Interface Sci 354(1):76–81CrossRefGoogle Scholar
  54. 54.
    Jubb AM, Allen HC (2010) Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl Mater Interfaces 2(10):2804–2812CrossRefGoogle Scholar
  55. 55.
    Chamritski I, Burns G (2005) Infrared and raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J Phys Chem B 109(11):4965–4968CrossRefGoogle Scholar
  56. 56.
    Brandt NN, Brovko OO, Chikishev AY, Paraschuk OD (2006) Optimization of the rolling-circle filter for Raman background subtraction. Appl Spectrosc 60:288–293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Petr Synek
    • 1
  • Ondřej Jašek
    • 1
    • 2
  • Lenka Zajíčková
    • 1
    • 2
  1. 1.RG Plasma Technologies, Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
  2. 2.Department of Physical Electronics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations