Plasma Chemistry and Plasma Processing

, Volume 34, Issue 2, pp 343–359 | Cite as

A Simplified Global Model to Describe the Oxidation of Acetylene Under Nanosecond Pulsed Discharges in a Complex Corona Reactor

Original Paper

Abstract

The objective of this paper is to analyse the oxidation of acetylene under nanosecond pulsed N2/O2 discharges generated in a complex multi-pin-to-plane (MPP) corona reactor in the frame of Yan’s generic chemical kinetic model. We made use of the results obtained from the detailed kinetic model published previously (Redolfi et al. in Plasma Chem Plasma Process 29(3):173–195, 2009) in order to propose a global reactor models based on Yan’s generic chemical model and taking into account the non-homogeneous and non-stationary character of the discharges. This enables us expressing the energy cost in terms of physical and kinetic parameters of the discharge. We checked the model validity by comparing predicted and measured energy cost-values for acetylene in MPP reactor. The methodology presented may be adapted to predict the energy cost in other complex corona reactor provided the model parameters are determined experimentally.

Keywords

Corona discharge Kinetic model Acetylene Oxygen atom 

References

  1. 1.
    Redolfi M, Aggadi N, Duten X, Touchard S, Pasquiers S, Hassouni K (2009) Oxidation of acetylene in atmospheric pressure pulsed corona discharge cell working in the nanosecond regime. Plasma Chem Plasma Process 29(3):173–195. doi: 10.1007/s11090-009-9169-z CrossRefGoogle Scholar
  2. 2.
    Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54. doi: 10.1016/j.jhazmat.2011.08.060 CrossRefGoogle Scholar
  3. 3.
    Redolfi M, Makhloufi C, Ognier S, Cavadias S (2010) Oxidation of kerosene components in a soil matrix by a dielectric barrier discharge reactor. Process Saf Environ Prot 88(3):207–212. doi: 10.1016/j.psep.2010.01.005 CrossRefGoogle Scholar
  4. 4.
    Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C, Vacher JR (2008) Plasma reactivity and plasma-surface interactions during treatment of toluene by a dielectric barrier discharge. Plasma Chem Plasma Process 28(4):429–466. doi: 10.1007/s11090-008-9135-1 CrossRefGoogle Scholar
  5. 5.
    Klett C, Touchard S, Vega-Gonzalez A, Redolfi M, Bonnin X, Hassouni K, Duten X (2012) Experimental and modeling study of the oxidation of acetaldehyde in an atmospheric-pressure pulsed corona discharge. Plasma Sources Sci Technol 21(4). doi: 10.1088/0963-0252/21/4/045001
  6. 6.
    Hoeben W, Beckers F, Pemen AJM, van Heesch EJM, Kling WL (2012) Oxidative degradation of toluene and limonene in air by pulsed corona technology. J Phys D-Appl Phys 45(5). doi: 10.1088/0022-3727/45/5/055202
  7. 7.
    Satoh K, Matsuzawa T, Itoh H (2008) Decomposition of benzene in a corona discharge at atmospheric pressure. Thin Solid Films 516(13):4423–4429. doi: 10.1016/j.tsf.2007.10.015 CrossRefGoogle Scholar
  8. 8.
    Kim HH (2004) Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Process Polym 1(2):91–110. doi: 10.1002/ppap.200400028 CrossRefGoogle Scholar
  9. 9.
    Guaitella O, Thevenet F, Puzenat E, Guillard C, Rousseau A (2008) C2H2 oxidation by plasma/TiO2 combination: influence of the porosity, and photocatalytic mechanisms under plasma exposure. Appl Catal B-Environ 80(3–4):296–305. doi: 10.1016/j.apcatb.2007.11.032 CrossRefGoogle Scholar
  10. 10.
    Thevenet F, Guaitella O, Puzenat E, Herrmann JM, Rousseau A, Guillard C (2007) Oxidation of acetylene by photocatalysis coupled with dielectric barrier discharge. Catal Today 122(1–2):186–194. doi: 10.1016/j.cattod.2007.01.057 CrossRefGoogle Scholar
  11. 11.
    Richter H, Howard JB (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog Energy Combust Sci 26(4–6):565–608. doi: 10.1016/s0360-1285(00)00009-5 CrossRefGoogle Scholar
  12. 12.
    Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena, Second Edition. Wiley International Edition edn. Library of Congress Catalog, United StateGoogle Scholar
  13. 13.
    Yan K, van Heesch EJM, Pemen AJM, Huijbrechts P (2001) From chemical kinetics to streamer corona reactor and voltage pulse generator. Plasma Chem Plasma Process 21(1):107–137. doi: 10.1023/a:1007045529652 CrossRefGoogle Scholar
  14. 14.
    Rosocha LA, Korzekwa RA (1999) Advanced oxidation and reduction processes in the gas phase using non-thermal plasmas. J Adv Oxid Technol 4(3):247–264Google Scholar
  15. 15.
    Grisch F, Grandin GA, Messina D, Attal-Tretout B (2009) Laser-based measurements of gas-phase chemistry in non-equilibrium pulsed nanosecond discharges. CR Mec 337(6–7):504–516. doi: 10.1016/j.crme.2009.06.021 CrossRefGoogle Scholar
  16. 16.
    Iza F, Walsh JL, Kong MG (2009) From submicrosecond-to nanosecond-pulsed atmospheric-pressure plasmas. IEEE Trans Plasma Sci 37(7):1289–1296. doi: 10.1109/tps.2009.2014766 CrossRefGoogle Scholar
  17. 17.
    Gaedtke H, Glänzer K, Hippler H, Luther K, Troe J (1973) Addition reactions of oxygen atoms at high pressures. Symp Intern Combust 14(1):295–303. doi: 10.1016/S0082-0784(73)80030-X CrossRefGoogle Scholar
  18. 18.
    Cvetanovic RJ (1987) Evaluated chemical kinetic data for the reactions of atomic oxygen O(P-3) with unsaturated-hydrocarbons. J Phys Chem Ref Data 16(2):261–326CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Redolfi
    • 1
  • S. Touchard
    • 1
  • X. Duten
    • 1
  • K. Hassouni
    • 1
  1. 1.LSPM, CNRS-UPR3407Université Paris 13 Sorbonne Paris CitéVilletaneuseFrance

Personalised recommendations