Plasma Chemistry and Plasma Processing

, Volume 34, Issue 3, pp 489–503 | Cite as

Numerical Modeling of an RF Argon–Silane Plasma with Dust Particle Nucleation and Growth

Original Paper

Abstract

A one-dimensional numerical model and simulation results are presented for a capacitively-coupled radio frequency parallel-plate argon–silane dusty plasma. The model includes self-consistently coupled numerical modules, including a plasma fluid model, a sectional aerosol model, and a simple chemistry model to predict rates of particle nucleation and surface growth. Operating conditions considered include 13.56 MHz frequency, 100 mTorr pressure, a 4-cm electrode gap, gas flow through the top electrode with a 30:1 ratio of argon to silane, and applied radio frequency voltage amplitude of either 100 or 250 V. In the higher voltage case two lobes of relatively large particles are formed by ion drag, while fresh nucleation occurs in the void between these lobes. It is shown that the reason that fresh nucleation occurs in the void involves an interplay among several coupled phenomena, including nanoparticle transport, the plasma potential profile, and trapping of silicon hydride anions that drive nucleation in this system.

Keywords

Dusty plasmas Silane Nanoparticles 

References

  1. 1.
    Kortshagen U, Bhandarkar U (1999) Phys Rev E 60:887–898CrossRefGoogle Scholar
  2. 2.
    Bhandarkar U, Swihart MT, Girshick SL, Kortshagen U (2000) J Phys D 33:2731–2746CrossRefGoogle Scholar
  3. 3.
    Bhandarkar U, Kortshagen U, Girshick SL (2003) J Phys D 36:1399–1408CrossRefGoogle Scholar
  4. 4.
    De Bleecker K, Bogaerts A, Goedheer W (2006) New J Phys 8:178CrossRefGoogle Scholar
  5. 5.
    Warthesen SJ, Girshick SL (2007) Plasma Chem Plasma Process 27:292–310CrossRefGoogle Scholar
  6. 6.
    Ravi L, Girshick SL (2009) Phys Rev E 79:026408–026409CrossRefGoogle Scholar
  7. 7.
    Agarwal P, Girshick SL (2012) Plasma Sources Sci Technol 21:055023CrossRefGoogle Scholar
  8. 8.
    Gelbard F, Tambour Y, Seinfeld JH (1980) J Coll Interface Sci 76:541–556CrossRefGoogle Scholar
  9. 9.
    Warren DR, Seinfeld JH (1985) Aerosol Sci Technol 4:31–43CrossRefGoogle Scholar
  10. 10.
    Huang DD, Seinfeld JH, Okuyama K (1991) J Coll Interface Sci 141:191–198CrossRefGoogle Scholar
  11. 11.
    Howling AA, Dorier J-L, Hollenstein C (1993) Appl Phys Lett 62:1341–1343CrossRefGoogle Scholar
  12. 12.
    Howling AA, Sansonnens L, Dorier J-L, Hollenstein C (1993) J Phys D 26:1003–1006CrossRefGoogle Scholar
  13. 13.
    Howling AA, Sansonnens L, Dorier J-L, Hollenstein C (1994) J Appl Phys 75:1340–1353CrossRefGoogle Scholar
  14. 14.
    Howling AA, Courteille C, Dorier J-L, Sansonnens L, Hollenstein C (1996) Pure Appl Chem 68:1017–1022CrossRefGoogle Scholar
  15. 15.
    Watanabe Y, Shiratani M, Fukuzawa T, Kawasaki H, Ueda Y, Singh S, Ohkura H (1996) J Vac Sci Technol, A 14:995–1001CrossRefGoogle Scholar
  16. 16.
    Watanabe Y, Shiratani M, Kawasaki H, Singh S, Fukuzawa T, Ueda Y, Ohkura H (1996) J Vac Sci Technol, A 14:540–545CrossRefGoogle Scholar
  17. 17.
    Perrin J, Böhm C, Etemadi R, Lioret A (1994) Plasma Sources Sci Technol 3:252–261CrossRefGoogle Scholar
  18. 18.
    Fridman AA, Boufendi L, Hbid T, Potapkin BV, Bouchoule A (1996) J Appl Phys 79:1303–1314CrossRefGoogle Scholar
  19. 19.
    Gallagher A, Howling AA, Hollenstein C (2002) J Appl Phys 91:5571–5580CrossRefGoogle Scholar
  20. 20.
    Agarwal P (2012) Numerical modeling of plasmas in which nanoparticles nucleate and grow. PhD thesis, University of Minnesota, MinneapolisGoogle Scholar
  21. 21.
    Kushner MJ (2009) J Phys D 42:194013CrossRefGoogle Scholar
  22. 22.
    Allen JE (1992) Phys Scripta 45:497–503CrossRefGoogle Scholar
  23. 23.
    Gallagher A (2000) Phys Rev E 62:2690–2706CrossRefGoogle Scholar
  24. 24.
    Bhandarkar UV (2002) Study of particle nucleation and growth in low pressure silane plasmas. PhD thesis, University of Minnesota, MinneapolisGoogle Scholar
  25. 25.
    Couedel L, Mikikian M, Samarian AA, Boufendi L (2010) Phys Plasmas 17:083705CrossRefGoogle Scholar
  26. 26.
    Alam MK, Flagan RC (1984) J Coll Interface Sci 97:232–246CrossRefGoogle Scholar
  27. 27.
    Swihart MT, Girshick SL (1999) J Phys Chem B 103:64–76CrossRefGoogle Scholar
  28. 28.
    Belenguer P, Blondeau JP, Boufendi L, Toogood M, Plain A, Bouchoule A, Laure C, Boeuf JP (1992) Phys Rev A 46:7923–7933CrossRefGoogle Scholar
  29. 29.
    Meeks E, Larson RS, Ho P, Apblett C, Han SM, Edelberg E, Aydil ES (1998) J Vac Sci Technol, A 16:544–563CrossRefGoogle Scholar
  30. 30.
    Denysenko I, Stefanovic I, Sikimic B, Winter J, Azarenkov NA, Sadeghi N (2011) J Phys D 44:205204CrossRefGoogle Scholar
  31. 31.
    Ashida S, Lee C, Lieberman MA (1995) J Vac Sci Technol, A 13:2498–2507CrossRefGoogle Scholar
  32. 32.
    Perrin J, Leroy O, Bordage MC (1996) Contrib Plasma Phys 36:3–49CrossRefGoogle Scholar
  33. 33.
    Kushner MJ (1988) J Appl Phys 63:2532–2551CrossRefGoogle Scholar
  34. 34.
    Ho P, Coltrin ME, Breiland WG (1994) J Phys Chem 98:10138–10147CrossRefGoogle Scholar
  35. 35.
    Buss RJ, Ho P, Breiland WG, Coltrin ME (1988) J Appl Phys 63:2808–2819CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Applied MaterialsSanta ClaraUSA

Personalised recommendations