Plasma Chemistry and Plasma Processing

, Volume 34, Issue 1, pp 93–109 | Cite as

Nitric Oxide Conversion and Ozone Synthesis in a Shielded Sliding Discharge Reactor with Positive and Negative Streamers

Original Paper


Positive and negative streamer discharges in atmospheric pressure air were generated in a shielded sliding discharge reactor at operating voltages as low as 5 kV for a gap length of 1.6 cm. In this reactor, electrodes are placed on top of a dielectric layer and one of the electrodes, generally the one on ground potential, is connected to a conductive layer on the opposite side of the dielectric. The energy per pulse, at the same applied voltage, was more than a factor of seven higher than that of pulsed corona discharges, and more than a factor of two higher than that of sliding discharges without a shield. It is explained on the basis of enhanced electric fields, particularly at the plasma emitting electrode. Specific input energy required for 50 % removal from ~1,000 ppm initial NO could be reduced to ~18 eV/molecule when ozone in the exhaust of negative streamers was utilized. For sliding discharges and pulsed corona discharges this value was ~25 eV/molecule and it was 35 eV/molecule for positive shielded sliding discharges. Also, the ozone energy yield from dry air was up to ~130 g/kW h and highest for negative streamer discharges in shielded sliding discharge reactors. The high energy density in negative streamer discharges in the shielded discharge reactor at the relatively low applied voltages might not only allow expansion of basic studies on negative streamers, but also open the path to industrial applications, which have so far been focused on positive streamer discharges.


Non-thermal plasma Pulsed corona discharges Sliding discharges Shielded sliding discharges Positive streamer discharges Negative streamer discharges Nitric oxide conversion Ozone generation 


  1. 1.
    Masuda S, Hirano M, Akutsu K (1981) Enhancement of electron beam denitrization process by means of electric field. Radiat Phys Chem 17:223–228Google Scholar
  2. 2.
    Masuda S, Hosokawa S, Tu X, Wang Z (1995) Novel plasma chemical technologies—PPCP and SPCP for control of gaseous pollutants and air toxics. J Electrost 34:415–438CrossRefGoogle Scholar
  3. 3.
    Cho BK, Lee J-H, Crellin CC, Olsona KL, Hilden DL, Kim MK, Kim PS, Heo I, Oh SH, Nam I-S (2012) Selective catalytic reduction of NOx by diesel fuel: Plasma-assisted HC/SCR system. Catal Today 191:20–24CrossRefGoogle Scholar
  4. 4.
    Lee DH, Lee JO, Kim KT, Song YH, Kim E, Han HS (2012) Hydrogen in plasma-assisted hydrocarbon selective catalytic reduction. Int J Hydrogen Energ 37:3225–3233CrossRefGoogle Scholar
  5. 5.
    Mizuno A, Clements JS, Davis RH (1986) A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization. IEEE Trans Ind Appl IA-22:516–522CrossRefGoogle Scholar
  6. 6.
    Clements JS, Mizuno A, Finney WC, Davis RH (1989) Combined Removal of SO2, NO, and Fly Ash from Simulated Flue Gas Using Pulsed Streamer Corona. IEEE Trans Ind Appl 25:62–69CrossRefGoogle Scholar
  7. 7.
    Nunez CM, Ramsey GH, Ponder WH, Abbott JH, Hamel LE, Kariher PH (1993) Corona destruction: an innovative control technology for VOCs and air toxics. Air Waste 43:242–247CrossRefGoogle Scholar
  8. 8.
    Yamamoto T, Ramanathan K, Lawless PA, Ensor DS, Newsome JR, Plaks N, Ramsey GH (1992) Control of volatile organic compounds by an ac energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE Trans Ind Appl 28:528–534CrossRefGoogle Scholar
  9. 9.
    Malik MA, Malik SA (1999) Pulsed corona discharges and their applications in toxic VOCs abatement. Chinese J Chem Eng 7:351–362Google Scholar
  10. 10.
    Vandenbroucke AM, Morent R, Geyter ND, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54CrossRefGoogle Scholar
  11. 11.
    Okubo M, Kametaka H, Yoshida K, Yamamoto T (2007) Odor Removal Characteristics of Barrier-Type Packed-Bed Nonthermal Plasma Reactor. Jpn J Appl Phys 46:5288–5293CrossRefGoogle Scholar
  12. 12.
    Wintenberg KK, Sherman DM, Tsai PP-Y, Gadri RB, Karakaya F, Chen Z, Roth JR, Montie TC (2000) Air Filter Sterilization Using a One Atmosphere Uniform Glow Discharge Plasma (the Volfilter). IEEE Trans Plasma Sci 28:64–71CrossRefGoogle Scholar
  13. 13.
    Nishikawa K, Nojima H (2003) Airborn virus inactivation technology using cluster ions generated by discharge plasma. Sharp Tech J 86:10–15Google Scholar
  14. 14.
    Vaze ND, Gallagher MJ, Park S, Fridman G, Vasilets VN, Gutsol AF, Anandan S, Friedman G, Fridman AA (2010) Inactivation of Bacteria in Flight by Direct Exposure to Nonthermal Plasma. IEEE Trans Plasma Sci 38:3234–3240CrossRefGoogle Scholar
  15. 15.
    Agrawal SR, Kim HJ, Lee YW, Sohn JH, Lee JH, Kim YJ, Lee SH, Hong CS, Park JW (2010) Effect of an Air Cleaner with Electrostatic Filter on the Removal of Airborne House Dust Mite Allergens. Yonsei Med J 51:918–923CrossRefGoogle Scholar
  16. 16.
    Dinelli G, Civitano L, Rea M (1990) Industrial experiments on pulse corona simultaneous removal of NOx and SO2 from flue gas. IEEE Trans Ind Appl 26:535–541CrossRefGoogle Scholar
  17. 17.
    Winands HGJJ, Yan K, Nair SA, Pemen GAJM, van Heesch BEJM (2005) Evaluation of Corona Plasma Techniques for Industrial Applications: hPPS and DC/AC Systems. Plasma Process Polym 2:232–237CrossRefGoogle Scholar
  18. 18.
    Mezuno A (2007) Industrial applications of atmospheric non-thermal plasma in environmental remediation. Plasma Phys Control Fusion 49:A1–A15CrossRefGoogle Scholar
  19. 19.
    Akiyama H, Sakugawa T, Namihira T, Takaki K, Minamitani Y, Shimomura N (2007) Industrial Applications of Pulsed Power Technology. IEEE Trans Dielect Elect Insul 14:1051–1064CrossRefGoogle Scholar
  20. 20.
    Clements JS, Sato M, Davis RH (1987) Preliminary Investigation of Prebreakdown Phenomena and Chemical Reactions Using a Pulsed High-Voltage Discharge in Water. IEEE Trns Ind Appl 1A–23:224–235CrossRefGoogle Scholar
  21. 21.
    Malik MA, Malik SA (1999) Catalyst Enhanced Oxidation of VOCs and Methane in Cold-Plasma Reactors. Platinum Metals Rev 43:109–113Google Scholar
  22. 22.
    Petitpas G, Rollier J-D, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L (2007) A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrogen Energ 32:2848–2867CrossRefGoogle Scholar
  23. 23.
    Chen HL, Lee HM, Chen SH, Chao Y, Chang MB (2008) Review of plasma catalysis on hydrocarbon reforming for hydrogen production—Interaction, integration, and prospects. Appl Catal B: Environ 85:1–9CrossRefGoogle Scholar
  24. 24.
    Koo IG, Lee WM (2005) Hydrogen isotope separation by plasma-chemical method. J Nucl Sci Technol 42:717–723CrossRefGoogle Scholar
  25. 25.
    Malik MA, Schoenbach KH (2012) New approach for sustaining energetic, efficient and scalable non-equilibrium plasma in water vapours at atmospheric pressure. J Phys D Appl Phys 45:132001CrossRefGoogle Scholar
  26. 26.
    Chang JS, Lawless PA, Yamamoto T (1999) Corona Discharge Processes. IEEE Trans Plasma Sci 19:1152–1166CrossRefGoogle Scholar
  27. 27.
    Briels TMP, Kos J, Winands GJJ, van Veldhuizen EM, Ebert U (2008) Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy. J Phys D Appl Phys 41:234004CrossRefGoogle Scholar
  28. 28.
    Wang D, Jikuya M, Yoshida S, Namihira T, Katsuki S, Akiyama H (2007) Positive- and Negative-Pulsed Streamer Discharges Generated by a 100-ns Pulsed-Power in Atmospheric Air. IEEE Trans Plasma Sci 35:1098–1103CrossRefGoogle Scholar
  29. 29.
    Winands GJJ, Liu Z, Pemen AJM, van Heesch EJM, Yan K (2008) Analysis of streamer properties in air as function of pulse and reactor parameters by ICCD photography. J Phys D Appl Phys 41:234001CrossRefGoogle Scholar
  30. 30.
    van Heesch EJM, Winands GJJ, Pemen AJM (2008) Evaluation of pulsed streamer corona experiments to determine the O* radical yield. J Phys D Appl Phys 41:234015CrossRefGoogle Scholar
  31. 31.
    Luque A, Ratushnaya V, Ebert U (2008) Positive and negative streamers in ambient air: modelling evolution and velocities. J Phys D Appl Phys 41:234005CrossRefGoogle Scholar
  32. 32.
    Teramoto Y, Fukumoto Y, Ono R, Oda T (2011) Streamer Propagation of Positive and Negative Pulsed Corona Discharges in Air. IEEE Trans Ind Appl 39:2218–2219Google Scholar
  33. 33.
    Xiang X, Guo L, Wu X, Ma X, Xia Y (2012) Urea formation from carbon dioxide and ammonia at atmospheric pressure. Environ Chem Lett 10:295–300CrossRefGoogle Scholar
  34. 34.
    Malik MA, Xiao S, Schoenbach KH (2012) Scaling of surface-plasma reactors with a significantly increased energy density for NO conversion. J Hazard Mater 209–210:293–298CrossRefGoogle Scholar
  35. 35.
    Bloshchitsyn V (2010) Review of surface discharge experiments. Accessed 31 Sep 2013
  36. 36.
    Yang SS, Lee SM, Iza F, Lee JK (2006) J Phys D Appl Phys 39:2775CrossRefGoogle Scholar
  37. 37.
    Malik MA, Kolb JF, Sun Y, Schoenbach KH (2011) Comparative study of NO removal in surface-plasma and volume-plasma reactors based on pulsed corona discharges. J Hazard Mater 197:220–228CrossRefGoogle Scholar
  38. 38.
    Raizer YP, Allen JE (Ed), Kisin VI (Trans) (1997) Gas discharge physics, 2nd print, Springer. Berlin, pp 334–338Google Scholar
  39. 39.
    Winands GJJ (2007) Efficient streamer plasma generation, PhD Thesis Eindhoven University of Technology, The Netherlands, Accessed Sep 31, 2013
  40. 40.
    Rogers TG, Neuber AA, Frank K, Laity GR, Dickens JC (2010) VUV Emission and Streamer Formation in Pulsed Dielectric Surface Flashover at Atmospheric Pressure. IEEE Trans Plasma Sci 38:2764–2770CrossRefGoogle Scholar
  41. 41.
    Laity G, Neuber A, Fierro A, Dickens J, Hatfield L (2011) Phenomenology of Streamer Propagation during Pulsed Dielectric Surface Flashover. IEEE Trans Dielectr Electr Insul 18:946–953CrossRefGoogle Scholar
  42. 42.
    Kogelschatz U, Eliasson B, Hirth M (1988) Ozone generation from oxygen and air: discharge physics and reaction mechanisms. Ozone Sci Eng 10:367–377CrossRefGoogle Scholar
  43. 43.
    Sathiamoorthy G, Kalyana S, Finney WC, Clark RJ, Locke BR (1999) Chemical Reaction Kinetics and Reactor Modeling of NOx Removal in a Pulsed Streamer Corona Discharge Reactor. Ind Eng Chem Res 38:1844–1855CrossRefGoogle Scholar
  44. 44.
    Penetrante BM, Brusasco RM, Merritt BT, Vogtlin GE (1999) Environmental applications of low-temperature plasmas. Pure Appl Chem 71:1829–1835CrossRefGoogle Scholar
  45. 45.
    Mok YS, Nam IS (2004) Reduction of Nitrogen Oxides by Ozonization-Catalysis Hybrid Process. Korean J Chem Eng 21:976–982CrossRefGoogle Scholar
  46. 46.
    Kuroki T, Fujishima H, Otsuka K, Ito T, Okubo M, Yamamoto T, Yoshida K (2008) Continuous operation of commercial-scale plasma–chemical aftertreatment system of smoke tube boiler emission with oxidation reduction potential and pH control. Thin Solid Films 516:6704–6709CrossRefGoogle Scholar
  47. 47.
    Barman S, Philip L (2006) Integrated system for the treatment of oxides of nitrogen from flue gases. Environ Sci Technol 40:1035–1041CrossRefGoogle Scholar
  48. 48.
    Jodzis S (2003) Effect of silica packing on ozone synthesis from oxygen-nitrogen mixtures. Ozone Sci Eng 25:63–72CrossRefGoogle Scholar
  49. 49.
    Malik MA, Minamitani Y, Schoenbach KH (2005) Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor. IEEE Trans Plasma Sci 33:50–56CrossRefGoogle Scholar
  50. 50.
    Kim HH, Prieto G, Takashima K, Katsura S, Mizuno A (2002) Performance evaluation of discharge plasma process for gaseous pollutant removal. J Electrost 55:25–41CrossRefGoogle Scholar
  51. 51.
    Jensen TK, Jørgensen L, Ørtenblad M, Stamate E, Simonsen P, Tobiassen L, Energy DONG (2008) NOx reduction obtained by low-temperature plasma generated ozone. In International Gas Union research conference 2541–2552 Accessed on Sep 31 2013
  52. 52.
    Okubo M, Fujishima H, Yamato Y, Kuroki T, Tanaka A, Otsuka K (2013) Towards Ideal NOx and CO2 Emission Control Technology for Bio-Oils Combustion Energy System Using a Plasma-Chemical Hybrid Process. J Phys: Conf Ser 418:012115Google Scholar
  53. 53.
    Huang W, Ren T, Xia W (2007) Ozone generation by hybrid discharge combined with catalysis. Ozone Sci Eng 29:107–112CrossRefGoogle Scholar
  54. 54.
    Pekárek S (2012) Experimental study of surface dielectric barrier discharge in air and its ozone production. J Phy D: Appl Phys 45:075201CrossRefGoogle Scholar
  55. 55.
    Sretenović GB, Obradović BM, Kovačević VV, Kuraica MM (2012) Pulsed corona discharge driven by Marx generator: diagnostics and optimization for NOx treatment. Curr Appl Phys 13:121–129CrossRefGoogle Scholar
  56. 56.
    Buntat Z, Smith IR, Razali NA (2009) Ozone generation using atmospheric pressure glow discharge in air. J Phys D Appl Phys 42:235202CrossRefGoogle Scholar
  57. 57.
    Furmanski J, Kim JY, Kim SO (2011) Triple-coupled intense atmospheric pressure plasma jet from honeycomb structural plasma device. IEEE Trans Plasma Sci 39:2338–2339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Frank Reidy Research Center for BioelectricsOld Dominion UniversityNorfolkUSA

Personalised recommendations