Plasma Chemistry and Plasma Processing

, Volume 33, Issue 5, pp 881–894 | Cite as

Plasma Treatment of Glass Surfaces Using Diffuse Coplanar Surface Barrier Discharge in Ambient Air

  • Tomáš Homola
  • Jindřich Matoušek
  • Martin Kormunda
  • Linda Y. L. Wu
  • Mirko Černák
Original Paper

Abstract

We report a study on the treatment of flat glass surfaces by ambient air atmospheric pressure plasma, generated by a dielectric barrier discharge of coplanar arrangement of the electrode system—the diffuse coplanar surface barrier discharge (DCSBD). The plasma treatment of glass was performed in both static and dynamic modes. With respect to wettability of the glass surface, treatment in static mode resulted in non-uniform surface properties, whereas dynamic mode provided a fully uniform treatment. A water contact angle measurement was used to determine the efficiency of plasma treatments in dynamic mode and also to investigate a hydrophobic recovery of plasma treated glass surfaces. The X-ray photoelectron spectroscopy measurements showed a decrease of overall carbon concentrations after plasma treatment. A deconvolution of C1s peak, showed that a short plasma treatment led to decrease of C–C bonds concentration and increases of C–O and O–C=O bond concentrations. An enhancing influence of the glass surface itself on DCSBD diffuse plasma was observed and explained by different discharge onsets and changes in the electric field distribution.

Keywords

Atmospheric pressure air plasma DCSBD Diffuse plasma Glass surface XPS 

References

  1. 1.
    Axinte E (2011) Mater Des 32:1717–1732CrossRefGoogle Scholar
  2. 2.
    Inoue T (2003) Energy Build 35:463–471CrossRefGoogle Scholar
  3. 3.
    Mohelnikova J (2009) Constr Build Mater 23:1993–1998CrossRefGoogle Scholar
  4. 4.
    Cras J, Rowe-Taitt C, Nivens D, Ligler F (1999) Biosens Bioelectron 14:683–688CrossRefGoogle Scholar
  5. 5.
    Lim SW (2003) Jpn J Appl Phys 42:5002–5009CrossRefGoogle Scholar
  6. 6.
    Angermann H, Henrion W, Rebien M (2004) Appl Surf Sci 235:322–339CrossRefGoogle Scholar
  7. 7.
    Han Y, Mayer D, Offenhausser A, Ingebrandt S (2006) Thin Solid Films 510:175–180CrossRefGoogle Scholar
  8. 8.
    Bell KL, Dalgarno A, Kingston AE (1968) J Phys B At Mol Opt 1:18–22CrossRefGoogle Scholar
  9. 9.
    Xu X (2001) Thin Solid Films 390:237–242CrossRefGoogle Scholar
  10. 10.
    Kogelschatz U, Eliasson B, Egli W (1999) Pure Appl Chem 71:1819–1828CrossRefGoogle Scholar
  11. 11.
    Gibalov V, Pietsch G (2000) J Phys D Appl Phys 33:2618–2636CrossRefGoogle Scholar
  12. 12.
    Iwasaki M, Matsudaira Y, Takeda K, Ito M, Miyamoto E, Yara T, Uehara T, Hori M (2008) J Appl Phys 103:023303-1–023303-7CrossRefGoogle Scholar
  13. 13.
    Šimor M, Ráheľ J, Vojtek P, Černák M, Brablec A (2002) Appl Phys Lett 81:2716–2718CrossRefGoogle Scholar
  14. 14.
    Zhu AM, Nie LH, Wu QH, Zhang XL, Yang XF, Xu Y, Shi C (2007) Chem Vap Depos 13:141–144CrossRefGoogle Scholar
  15. 15.
    Masuda S, Akutsu K, Kuroda M, Awatsu Y, Shibuya Y (1988) IEEE T Ind Appl 24:223–231CrossRefGoogle Scholar
  16. 16.
    Langmuir I (1918) J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  17. 17.
    Paynter R (1999) Surf Interface Anal 27:103–113CrossRefGoogle Scholar
  18. 18.
    Buček A, Homola T, Aranyosiová M, Velič D, Plecenik T, Havel J, Sťahel P, Zahoranová A (2008) Chem Listy 102:1459–1462Google Scholar
  19. 19.
    Takahashi H, Sato K, Sakata S, Okada T (1995) J Electrostat 35:309–322CrossRefGoogle Scholar
  20. 20.
    Ames D (2004) Surf Coat Tech 187:199–207CrossRefGoogle Scholar
  21. 21.
    Yamamoto T, Okubo M, Imai N, Mori Y (2004) Plasma Chem Plasma P 24:1–12CrossRefGoogle Scholar
  22. 22.
    Kondoh E, Asano T, Nakashima A, Komatu M (2000) J Vac Sci Technol, B 18:1276–1280CrossRefGoogle Scholar
  23. 23.
    Larson B, Helgren J, Manolache S, Lau A, Lagally M, Denes F (2005) Biosens Bioelectron 21:796–801CrossRefGoogle Scholar
  24. 24.
    Černák M (2007) Faculty of mathematics, physics and informatics. Comenius University, Slovakia: Patent WO 2007/142612 A1, SlovakiaGoogle Scholar
  25. 25.
    Černák M, Černáková Ľ, Hudec I, Kováčik D, Zahoranová A (2009) Eur Phys J Appl Phys 47:22806-1–22806-6Google Scholar
  26. 26.
    Hoder T, Šíra M, Kozlov KV, Wagner HE (2008) J Phys D Appl Phys 41:035212-1–035212-9CrossRefGoogle Scholar
  27. 27.
    Homola T, Matoušek M, Hergelová B, Kormunda M, Wu YLL, Černák M (2012) Polym Degrad Stab 97:886–892CrossRefGoogle Scholar
  28. 28.
    Paschen F (1889) Ann Phys 273:69–96CrossRefGoogle Scholar
  29. 29.
    Loeb LB, Meek JM (1940) J Appl Phys 11:438–447CrossRefGoogle Scholar
  30. 30.
    Loeb LB, Meek JM (1940) J Appl Phys 11:459–474CrossRefGoogle Scholar
  31. 31.
    Raizer YP (1991) Gas discharge physics. Springer, BerlinCrossRefGoogle Scholar
  32. 32.
    Massines F, Gherardi N, Naudé N, Ségur P (2009) Eur Phys J Appl Phys 47:22805-1–22805-10CrossRefGoogle Scholar
  33. 33.
    Brauer I, Punset C, Purwins HG, Boeuf JP (1999) J Appl Phys 85:7569–7572CrossRefGoogle Scholar
  34. 34.
    Chen F, Von Goeler S (2006) Introduction to plasma physics and controlled fusion, vol 1: Plasma physics. SpringerGoogle Scholar
  35. 35.
    Homola T, Matoušek J, Medvecká V, Zahoranová A, Kormunda M, Kováčik D, Černák M (2012) Appl Surf Sci 258:7135–7139CrossRefGoogle Scholar
  36. 36.
    van Oss C, Chaudhury MK, Good RJ (1988) Chem Rev 88:927–941CrossRefGoogle Scholar
  37. 37.
    Pianoforte K (2011) The industrial coatings market: industrial coatings manufacturers express optimism for the coming year. Coatings world. http://www.coatingsworld.com/issues/2011-06/view_features/the-industrial-coatings-market/. Accessed 2011
  38. 38.
    Homola T, Buček A, Zahoranová A, Černák M (2007) 16th annual conference of Doctoral students WDS ‘07—part II: physics of plasma and ionized media. Prague Matfyzpress 124–128Google Scholar
  39. 39.
    Morent R, De Geyter N, Leys C, Gengembre L, Payen E (2007) Surf Coat Tech 201:7847–7854CrossRefGoogle Scholar
  40. 40.
    Kormunda M, Homola T, Matoušek J, Kováčik D, Černák M, Pavlík J (2012) Polym Degrad Stab 97:547–553CrossRefGoogle Scholar
  41. 41.
    Pykonen M, Sundqvist H, Kaukoniemi O, Tuominen M, Lahti J, Fardim P, Toivakka M (2008) Surf Coat Tech 202:3777–3786CrossRefGoogle Scholar
  42. 42.
    Lin JW, Chang HC (2011) Nucl Instrum Meth B 269:1801–1808CrossRefGoogle Scholar
  43. 43.
    Prysiazhnyi V, Cernak M (2012) Thin Solid Films 520:6561–6565CrossRefGoogle Scholar
  44. 44.
    Dupont-Gillain CC, Adriaensen Y, Derclaye S, Rouxhet PG (2000) Langmuir 16:8194–8200CrossRefGoogle Scholar
  45. 45.
    De Geyter N, Morent R, Leys C (2008) Nucl Instrum Meth B 266:3086–3090CrossRefGoogle Scholar
  46. 46.
    Prysiazhnyi V, Zaporojchenko V, Kersten H, Černák M (2012) Appl Surf Sci 258:5467–5471CrossRefGoogle Scholar
  47. 47.
    Homola T, Matoušek J, Hergelová B, Kormunda M, Wu LY, Černák M (2012) Polym Degrad Stab 97:2249–2254CrossRefGoogle Scholar
  48. 48.
    Wang C, He X (2006) Appl Surf Sci 252:8348–8351CrossRefGoogle Scholar
  49. 49.
    Crist BV (2004) Handbook of monochromatic XPS spectra. XPS International LLC, USAGoogle Scholar
  50. 50.
    Takeda S, Yamamoto K, Hayasaka Y, Matsumoto K (1999) J Non Cryst Solids 249:41–46CrossRefGoogle Scholar
  51. 51.
    So L, Ng N, Bilek M, Pigram PJ, Brack N (2006) Surf Interface Anal 38:648–651CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tomáš Homola
    • 1
    • 2
  • Jindřich Matoušek
    • 3
  • Martin Kormunda
    • 3
  • Linda Y. L. Wu
    • 2
  • Mirko Černák
    • 1
    • 4
  1. 1.R&D Centre for Low-Cost Plasma and Nanotechnology Surface ModificationMasaryk UniversityBrnoCzech Republic
  2. 2.Surface Technology GroupSingapore Institute of Manufacturing TechnologySingaporeSingapore
  3. 3.Department of Physics, Faculty of ScienceJ.E. Purkinje UniversityÚstí nad LabemCzech Republic
  4. 4.Department of Experimental Physics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia

Personalised recommendations