Plasma Chemistry and Plasma Processing

, Volume 33, Issue 1, pp 17–49 | Cite as

Streamer-Like Electrical Discharges in Water: Part II. Environmental Applications

  • Ravindra P. Joshi
  • Selma Mededovic ThagardEmail author
Review Paper


Plasmas formed in aqueous solutions dissociate water into highly oxidative and reductive radicals which can induce chemical changes in compounds present in the bulk liquid. As a result, electrical discharge plasmas have acquired significant importance in drinking and wastewater treatment. Part II of this manuscript reviews the chemistry of electrical discharges in liquid water and the chemical effects of plasmas on the degradation of organic molecules. Due to a wide range of work done with plasmas in water, this review is limited to streamer-like electrical discharges directly in water excluding the discharges with gases bubbling through the plasma zone and the presence of additives. The goal was to summarize and present major findings on the fundamental mechanisms related to the production of radicals in the plasma as well as to describe chemical pathways for the degradation of different groups of molecules.


Electrical discharge Organic compounds Plasma chemistry Water 



One of the authors (S.M.T.) would like to acknowledge the support by the National Science Foundation (CBET: BRIGE 1125592).


  1. 1.
    Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS (2006) Electrohydraulic discharge and nonthermal plasma for water treatment. Ind Eng Chem Res 45(3):882–905CrossRefGoogle Scholar
  2. 2.
    Akiyama H (2000) Streamer discharges in liquids and their applications. IEEE Trans Dielectr Electr Insul 7(5):646–653CrossRefGoogle Scholar
  3. 3.
    Malik MA, Ghaffar A, Malik SA (2001) Water purification by electrical discharges. Plasma Sources Sci Technol 10(1):82–91CrossRefGoogle Scholar
  4. 4.
    Sunka P (2001) Pulse electrical discharges in water and their applications. Phys Plasmas 8(5):2587–2594CrossRefGoogle Scholar
  5. 5.
    Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42(5):053001–053012CrossRefGoogle Scholar
  6. 6.
    Brisset J-L, Moussa D, Doubla A, Hnatiuc E, Hnatiuc B, Kamgang Youbi G, Herry J-M, Naitali M, Bellon-Fontaine M-N (2008) Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media: examples of gliding discharge treated solutions. Ind Eng Chem Res 47(16):5761–5781CrossRefGoogle Scholar
  7. 7.
    Chang J-S (2001) Recent development of plasma pollution control technology: a critical review. Sci Technol Adv Mater 2(3–4):571–581CrossRefGoogle Scholar
  8. 8.
    Schoenbach KH, Joshi RP, Stark RH, Dobbs FC, Beebe SJ (2000) Bacterial decontamination of liquids with pulsed electric fields. IEEE Trans Dielectr Electr Insul 7(5):637–645CrossRefGoogle Scholar
  9. 9.
    Abou-Ghazala A, Katsuki S, Schoenbach KH, Dobbs FC, Moreira KR (2002) Bacterial decontamination of water by means of pulsed-corona discharges. IEEE Trans Plasma Sci 30(4):1449–1453CrossRefGoogle Scholar
  10. 10.
    Bystritskii VM, Wood TK, Yankelevich Y, Chauhan S, Yee D, Wessel F (1997) Pulsed power for advanced waste water remediation. In: Pulsed power conference, 1997 11th IEEE international, 29 June–2 July 1997, pp 79–84Google Scholar
  11. 11.
    Lisitsyn IV, Nomiyama H, Katsuki S, Akiyama H (1999) Streamer discharge reactor for water treatment by pulsed power. Rev Sci Instrum 70(8):3457–3462CrossRefGoogle Scholar
  12. 12.
    Gerrity D, Stanford BD, Trenholm RA, Snyder SA (2010) An evaluation of a pilot-scale nonthermal plasma advanced oxidation process for trace organic compound degradation. Water Res 44(2):493–504CrossRefGoogle Scholar
  13. 13.
    Faraday M (1832) Experimental researches in electricity. Printed by R. Taylor, LondonGoogle Scholar
  14. 14.
    Rodebush WH, Wahl MW (1933) The reactions of the hydroxyl radical in the electrodeless discharge in water vapor. J Chem Phys 1:696–702CrossRefGoogle Scholar
  15. 15.
    Davies RA, Hickling A (1952) 686. Glow-discharge electrolysis. Part I. The anodic formation of hydrogen peroxide in inert electrolytes. J Chem Soc 3595–3602. doi: 10.1039/JR9520003595
  16. 16.
    Sato M, Ohgiyama T, Clements JS (1996) Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water. IEEE Trans Ind Appl 32(1):106–112CrossRefGoogle Scholar
  17. 17.
    Joshi AA, Locke BR, Arce P, Finney WC (1995) Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J Hazard Mater 41(1):3–30CrossRefGoogle Scholar
  18. 18.
    Sunka P, Babicky V, Clupek M, Lukes P, Simek M, Schmidt J, Cernak M (1999) Generation of chemically active species by electrical discharges in water. Plasma Sour Sci Technol 8(2):258–265CrossRefGoogle Scholar
  19. 19.
    Kirkpatrick MJ, Locke BR (2005) Hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge. Ind Eng Chem Res 44(12):4243–4248CrossRefGoogle Scholar
  20. 20.
    Tezuka M (1993) Anodic hydrogen evolution in contact glow-discharge electrolysis of sulfuric acid. Denki Kagaku 61:794–795Google Scholar
  21. 21.
    Sun B, Sato M, Harano A, Clements JS (1998) Non-uniform pulse discharge-induced radical production in distilled water. J Electrostat 43(2):115–126CrossRefGoogle Scholar
  22. 22.
    Sun B, Sato M, Sid Clements J (1997) Optical study of active species produced by a pulsed streamer corona discharge in water. J Electrostat 39(3):189–202CrossRefGoogle Scholar
  23. 23.
    Hickling A (1971) Electrochemical processes in glow discharge at the gas-solution interface. In: Bockris JOM, Conway BE (eds) Modern aspects of electrochemistry. Plenium Press, New YorkGoogle Scholar
  24. 24.
    Hubbard CD, Rv Eldik (1997) Chemistry under extreme or non-classical conditions. John Wiley and Spektrum, New YorkGoogle Scholar
  25. 25.
    Willberg DM, Lang PS, Hochemer RH, Kratel AW, Hoffman MR (1996) Electrohydraulic destruction of hazardous wastes. ChemTech 26(4):52–57Google Scholar
  26. 26.
    Clements JS, Sato M, Davis RH (1987) Preliminary Investigation of Prebreakdown Phenomena and Chemical Reactions Using a Pulsed High-Voltage Discharge in Water. IEEE Trans Ind Appl IA-23(2):224–235CrossRefGoogle Scholar
  27. 27.
    Sahni M, Locke BR (2006) Quantification of hydroxyl radicals produced in aqueous phase pulsed electrical discharge reactors. Ind Eng Chem Res 45(17):5819–5825CrossRefGoogle Scholar
  28. 28.
    Lukes P (2001) Water treatment by pulsed streamer corona discharge. PhD dissertation, Institute of Chemical Technology, Prague, Czech RepublicGoogle Scholar
  29. 29.
    Anpilov AM, Barkhudarov EM, Bark YB, Zadiraka YV, Christofi M, Kozlov YN, Kossyi IA, Kop’ev VA, Silakov VP, Taktakishvili MI, Temchin SM (2001) Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide. J Phys D Appl Phys 34(6):993–999CrossRefGoogle Scholar
  30. 30.
    Cheng H-H, Chen S-S, Wu Y-C, Ho D-L (2007) Non-thermal plasma technology for degradation of organic compounds in wastewater. J Environ Eng Manage 17(6):427–433Google Scholar
  31. 31.
    Mededovic S, Locke BR (2006) Platinum catalysed decomposition of hydrogen peroxide in aqueous-phase pulsed corona electrical discharge. Appl Catal B-Environ 67(3–4):149–159CrossRefGoogle Scholar
  32. 32.
    Sahni M, Finney WC, Locke BR (2005) Degradation of aqueous phase polychlorinated biphenyls (PCB) using pulsed corona discharges. J Adv Oxid Technol 8(1):105–111Google Scholar
  33. 33.
    Brisset JL (1998) Removal of pentachlorophenol from water by AC corona discharge treatment in air. J Trace Microprobe Tech 16(3):363–370Google Scholar
  34. 34.
    Even-Ezraa I, Mizrahia A, Gerrityb D, Snyderb S, Salvesonc A, Lahavd O (2009) Application of a novel plasma-based advanced oxidation process for efficient and cost-effective destruction of refractory organics in tertiary effluents and contaminated groundwater. Desalin Water Treat 11:236–244CrossRefGoogle Scholar
  35. 35.
    Manolache S, Shamamian V, Denes F (2004) Dense medium plasma-enhanced decontamination of water of aromatic compounds. J Environ Eng 130(1):17–25CrossRefGoogle Scholar
  36. 36.
    Koh IO, Wohlers J, Thiemann W, Rotard W (2009) Application of an air ionization device using an atmospheric pressure corona discharge process for water purification. Water Air Soil Poll 196(1–4):101–113Google Scholar
  37. 37.
    Mededovic S, Finney WC, Locke BR (2007) Aqueous-phase mineralization of s-triazine using pulsed electrical discharge. IJPEST 1(1):82–90Google Scholar
  38. 38.
    Mededovic S, Locke BR (2007) Side-chain degradation of atrazine by pulsed electrical discharge in water. Ind Eng Chem Res 46(9):2702–2709CrossRefGoogle Scholar
  39. 39.
    Sugiarto AT, Ito S, Ohshima T, Sato M, Skalny JD (2003) Oxidative decoloration of dyes by pulsed discharge plasma in water. J Electrostat 58(1–2):135–145CrossRefGoogle Scholar
  40. 40.
    Mededovic S, Takashima K (2008) Decolorization of indigo carmine dye by spark discharge in water. IJPEST 2(1):56–66Google Scholar
  41. 41.
    Yano T, Shimomura N, Uchiyama I, Fukawa F, Teranishi K, Akiyama H (2009) Decolorization of indigo carmine solution using nanosecond pulsed power. IEEE Trans Dielectr Electr Insul 16(4):1081–1087CrossRefGoogle Scholar
  42. 42.
    Grymonpre DR, Finney WC, Locke BR (1999) Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: model-data comparison. Chem Eng Sci 54(15–16):3095–3105Google Scholar
  43. 43.
    Lukes P, Clupek M, Sunka P, Peterka F, Sano T, Negishi N, Matsuzawa S, Takeuchi K (2005) Degradation of phenol by underwater pulsed corona discharge in combination with TiO2 photocatalysis. Res Chem Intermediat 31(4–6):285–294CrossRefGoogle Scholar
  44. 44.
    Yang XL, Bai MD, Han F (2009) Treatment of phenol wastewater using hydroxyl radical produced by micro-gap discharge plasma technique. Water Environ Res 81(4):450–455CrossRefGoogle Scholar
  45. 45.
    Sharma AK, Locke BR, Arce P, Finney WC (1993) A preliminary study of pulsed streamer corona discharge for the degradation of phenol in aqueous solutions. Hazard Waste Hazard 10(2):209–219CrossRefGoogle Scholar
  46. 46.
    Sun B, Sato M, Clements JS (1999) Oxidative processes occurring when pulsed high voltage discharges degrade phenol in aqueous solution. Environ Sci Technol 34(3):509–513CrossRefGoogle Scholar
  47. 47.
    Hoeben WFLM, van Velduizen EM, Rutgers WR, Kroesen GMW (1999) Gas phase corona discharges for oxidation of phenol in an aqueous solution. J Phys D Appl Phys 32(24):L133–L137CrossRefGoogle Scholar
  48. 48.
    Hoeben WFLM (2000) Pulsed corona-induced degradation of organic materials in water. PhD dissertation, Eindhoven, NetherlandsGoogle Scholar
  49. 49.
    Tezuka M, Iwasaki M (1998) Plasma induced degradation of chlorophenols in an aqueous solution. Thin Solid Films 316(1–2):123–127CrossRefGoogle Scholar
  50. 50.
    Hao XL, Zhou MH, Lei LC (2007) Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water. J Hazard Mater 141(3):475–482CrossRefGoogle Scholar
  51. 51.
    Sahni M, Locke BR (2006) Degradation of chemical warfare agent simulants using gas–liquid pulsed streamer discharges. J Hazard Mater 137(2):1025–1034CrossRefGoogle Scholar
  52. 52.
    Yoon J, Lee C, Lee Y (2006) Oxidative degradation of dimethylsulfoxide by locally concentrated hydroxyl radicals in streamer corona discharge process. Chemosphere 65(7):1163–1170CrossRefGoogle Scholar
  53. 53.
    Wen Y-Z, Jiang X-Z (2001) Pulsed corona discharge-induced reactions of acetophenone in water. Plasma Chem Plasma Process 21(3):345–354CrossRefGoogle Scholar
  54. 54.
    Yee DC, Chauhan S, Yankelevich E, Bystritskii V, Wood TK (1998) Degradation of perchloroethylene and dichlorophenol by pulsed-electric discharge and bioremediation. Biotechnol Bioeng 59(4):438–444CrossRefGoogle Scholar
  55. 55.
    Krause H, Schweiger B, Prinz E, Kim J, Steinfeld U (2011) Degradation of persistent pharmaceuticals in aqueous solutions by a positive dielectric barrier discharge treatment. J Electrostat 69(4):333–338CrossRefGoogle Scholar
  56. 56.
    Magureanu M, Piroi D, Mandache NB, David V, Medvedovici A, Bradu C, Parvulescu VI (2011) Degradation of antibiotics in water by non-thermal plasma treatment. Water Res 45(11):3407–3416CrossRefGoogle Scholar
  57. 57.
    Fridman AA (2008) Plasma chemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  58. 58.
    Bruggeman P, Schram DC (2010) On OH production in water containing atmospheric pressure plasmas. Plasma Sources Sci Technol 19(4):045025–045034CrossRefGoogle Scholar
  59. 59.
    Givotov VK, Fridman AA, Krotov MF, Krasheninnikov EG, Patrushev BI, Rusanov VD, Sholin GV (1981) Plasmochemical methods of hydrogen production. Int J Hydrogen Energy 6(5):441–449CrossRefGoogle Scholar
  60. 60.
    Gupta SB, Bluhm H (2008) The potential of pulsed underwater streamer discharges as a disinfection technique. IEEE Trans Plasma Sci 36(4):1621–1632CrossRefGoogle Scholar
  61. 61.
    Itikawa Y, Mason N (2005) Cross sections for electron collisions with water molecules. J Phys Chem Ref Data 34(1):1–22CrossRefGoogle Scholar
  62. 62.
    Yousfi M, Benabdessadok MD (1996) Boltzmann equation analysis of electron-molecule collision cross sections in water vapor and ammonia. J Appl Phys 80(12):6619–6630CrossRefGoogle Scholar
  63. 63.
    Zheng WJ, Jewitt D, Kaiser RI (2006) Formation of hydrogen, oxygen, and hydrogen peroxide in electron-irradiated crystalline water ice. Astrophys J 639(1):534–548CrossRefGoogle Scholar
  64. 64.
    Slanger TG, Black G (1982) Photodissociative channels at 1216 A for H2O, NH3, and CH4. J Chem Phys 77(5):2432–2437CrossRefGoogle Scholar
  65. 65.
    Black G, Porter G (1962) Vacuum ultra-violet flash photolysis of water vapour. Proc R Soc Lond A 266(1325):185–197CrossRefGoogle Scholar
  66. 66.
    Nishimura T, Itikawa Y (1995) Electron-impact vibrational excitation of water molecules. J Phys B-At Mol Opt 28(10):1995–2003CrossRefGoogle Scholar
  67. 67.
    Black G, Porter G (1962) Vacuum ultra-violet flash photolysis of water vapour. Proc R Soc Lond A 266(1325):185–197CrossRefGoogle Scholar
  68. 68.
    Dolan TJ (1993) Electron and ion collisions with water vapour. J Phys D Appl Phys 26(1):4–8CrossRefGoogle Scholar
  69. 69.
    Mozumder A (1999) Fundamentals of radiation chemistry. Academic Press, San DiegoGoogle Scholar
  70. 70.
    Namihira T, Sakai S, Yamaguchi T, Yamamoto K, Yamada C, Kiyan T, Sakugawa T, Katsuki S, Akiyama H (2007) Electron temperature and electron density of underwater pulsed discharge plasma produced by solid-state pulsed-power generator. IEEE Trans Plasma Sci 35(3):614–618CrossRefGoogle Scholar
  71. 71.
    Staack D, Fridman A, Gutsol A, Gogotsi Y, Friedman G (2008) Nanoscale corona discharge in liquids, enabling nanosecond optical emission spectroscopy. Angew Chem Int Ed 47(42):8020–8024CrossRefGoogle Scholar
  72. 72.
    Mason T, Lorimer J (2002) Applied sonochemistry: the uses of power ultrasound in chemistry and processing. Wiley-VCH, DarmstadtGoogle Scholar
  73. 73.
    Kai-Yuan S, Locke BR (2011) Optical and electrical diagnostics of the effects of conductivity on liquid phase electrical discharge. IEEE Trans Plasma Sci 39(3):883–892CrossRefGoogle Scholar
  74. 74.
    Thagard SM, Takashima K, Mizuno A (2009) Chemistry of the positive and negative electrical discharges formed in liquid water and above a gas-liquid surface. Plasma Chem Plasma Process 29(6):455–473CrossRefGoogle Scholar
  75. 75.
    Mededovic S, Locke BR (2007) Primary chemical reactions in pulsed electrical discharge channels in water. J Phys D Appl Phys 40(24):7734–7746CrossRefGoogle Scholar
  76. 76.
    Gupta SB (2007) Investigation of a physical disinfection process based on pulsed underwater corona discharges. PhD dissertation, Karlshrue, GermanyGoogle Scholar
  77. 77.
    Locke BR, Shih K-Y (2011) Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sour Sci Technol 20(3):034006–034021CrossRefGoogle Scholar
  78. 78.
    Sahni M, Locke BR (2006) Quantification of reductive species produced by high voltage electrical discharges in water. Plasma Process Polym 3(4–5):342–354CrossRefGoogle Scholar
  79. 79.
    Yasui K, Tuziuti T, Iida Y, Mitome H (2003) Theoretical study of the ambient-pressure dependence of sonochemical reactions. J Chem Phys 119(1):346–356CrossRefGoogle Scholar
  80. 80.
    Sun B, Sato M, Clements JS (1999) Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution. J Phys D Appl Phys 32(15):1908–1915CrossRefGoogle Scholar
  81. 81.
    Hart EJ, Boag JW (1962) Absorption spectrum of the hydrated electron in water and in aqueous solutions. J Am Chem Soc 84(21):4090–4095CrossRefGoogle Scholar
  82. 82.
    Roots R, Okada S (1975) Estimation of life times and diffusion distances of radicals involved in X-ray-induced DNA strand breaks or killing of mammalian cells. Radiat Res 64(2):306–320CrossRefGoogle Scholar
  83. 83.
    Klimkin VF, Ponomarenko AG (1979) Interferometric study of pulsed breakdown in a liquid. Sov Phys-Tech Phys 24(1):1067–1071Google Scholar
  84. 84.
    Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40(22):4681–4715CrossRefGoogle Scholar
  85. 85.
    NIST Chemical Kinetics Database. Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.5 Data Version 2012.02.
  86. 86.
    Liu DX, Bruggeman P, Iza F, Rong MZ, Kong MG (2010) Global model of low-temperature atmospheric-pressure He + H2O plasmas. Plasma Sour Sci Technol 19(2):025018–025040CrossRefGoogle Scholar
  87. 87.
    Eisenberg G (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem Anal Ed 15(5):327–328CrossRefGoogle Scholar
  88. 88.
    Grymonpré DR, Sharma AK, Finney WC, Locke BR (2001) The role of Fenton’s reaction in aqueous phase pulsed streamer corona reactors. Chem Eng J 82(1–3):189–207CrossRefGoogle Scholar
  89. 89.
    Grymonpre DR, Finney WC, Clark RJ, Locke BR (2004) Hybrid gas-liquid electrical discharge reactors for organic compound degradation. Ind Eng Chem Res 43(9):1975–1989CrossRefGoogle Scholar
  90. 90.
    Kirkpatrick M (2004) Plasma-catalyst interactions in treatment of gas phase contaminants and electrical discharge in water. PhD dissertation, Tallahassee, FloridaGoogle Scholar
  91. 91.
    Sunka P, Benes J, Lukes P, Zadinova M, Hoffer P, Pouckova P (2009) Biological effects of tandem shock waves on soft animal tissues- preliminary “in vivo” experiments. In: ICOPS 2009 IEEE international conference on plasma science, 1–5 June 2009, pp 1–1Google Scholar
  92. 92.
    Sunka P, Babicky V, Clupek M, Benes J, Pouckova P (2004) Localized damage of tissues induced by focused shock waves. IEEE Trans Plasma Sci 32(4):1609–1613CrossRefGoogle Scholar
  93. 93.
    Robinson JW, Ham M, Balaster AN (1973) Ultraviolet radiation from electrical discharges in water. J Appl Phys 44(1):72–75CrossRefGoogle Scholar
  94. 94.
    Bolton JR (1999) Ultraviolet applications handbook. Bolton Photosciences Inc., AyrGoogle Scholar
  95. 95.
    Lukes P, Clupek M, Babicky V, Sunka P (2008) Ultraviolet radiation from the pulsed corona discharge in water. Plasma Sour Sci Technol 17(2):024012–024023CrossRefGoogle Scholar
  96. 96.
    Sun B, Zhang L, Sato M (2008) Characteristics of atomic oxygen produced by a pulsed streamer corona discharge. Int J Environ Waste Manage 2(11):447–457CrossRefGoogle Scholar
  97. 97.
    Gupta SB, Bluhm H (2007) Pulsed underwater corona discharges as a source of strong oxidants: OH and H2O2. Water Sci Technol 55(12):7–12CrossRefGoogle Scholar
  98. 98.
    De Baerdemaeker F, Simek M, Leys C (2007) Efficiency of hydrogen peroxide production by ac capillary discharge in water solution. J Phys D Appl Phys 40(9):2801–2809CrossRefGoogle Scholar
  99. 99.
    Yang SD, Zhang LH, Cui FG, Ma J (2009) Production of hydrogen peroxide by pulsed high voltage discharge in water. In: 2009 3rd international conference on bioinformatics and biomedical engineering, vol 1–11, pp 5346–5349Google Scholar
  100. 100.
    Shih KY, Locke BR (2011) Optical and electrical diagnostics of the effects of conductivity on liquid phase electrical discharge. IEEE Trans Plasma Sci 39(3):883–892CrossRefGoogle Scholar
  101. 101.
    Goryachev VL, Rutberg FG, Ufimtsev AA (1998) Photolytic properties of a pulsed discharge in water. Tech Phys Lett +24(2):122–123Google Scholar
  102. 102.
    Tarr MA (2003) Chemical degradation methods for wastes and pollutants: environmental and industrial applications. M. Dekker, New YorkCrossRefGoogle Scholar
  103. 103.
    Notre Dame Radiation Database.
  104. 104.
    Dorfman LM, Adams GE (1973) Reactivity of the hydroxyl radical in aqueous solutions. National Standard Reference Data Series 46 (NSRDS-NBS46). U. S. Department of CommerceGoogle Scholar
  105. 105.
    Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) Reactivity of HO2/O2- radicals in aqueous solution. J Phys Chem Ref Data 14(4):1041–1100CrossRefGoogle Scholar
  106. 106.
    Neta P (1972) Reactions of hydrogen atoms in aqueous solutions. Chem Rev 72(5):533–543CrossRefGoogle Scholar
  107. 107.
    Anbar M, Hart EJ (1964) The reactivity of aromatic compounds toward hydrated electrons. J Am Chem Soc 86(24):5633–5637CrossRefGoogle Scholar
  108. 108.
    Rice FO, Herzfeld KF (1934) The thermal decomposition of organic compounds from the standpoint of free radicals. VI. The mechanism of some chain reactions. J Am Chem Soc 56(2):284–289CrossRefGoogle Scholar
  109. 109.
    Rice FO (1931) The thermal decomposition of organic compunds from the standpoint of free radicals. I. Saturated hydrocarbons. J Am Chem Soc 53(5):1959–1972CrossRefGoogle Scholar
  110. 110.
    Mededovic Thagard S, Prieto G, Takashima K, Mizuno A (2012) Identification of gas phase byproducts formed during electrical discharges in liquid fuels”. IEEE Trans Plasma Sci 40:2016–2111CrossRefGoogle Scholar
  111. 111.
    Jakob L, Hashem TM, Bürki S, Guindy NM, Braun AM (1993) Vacuum-ultraviolet (VUV) photolysis of water: oxidative degradation of 4-chlorophenol. J Photoch Photobio A 75(2):97–103CrossRefGoogle Scholar
  112. 112.
    Tri Sugiarto A, Ohshima T, Sato M (2002) Advanced oxidation processes using pulsed streamer corona discharge in water. Thin Solid Films 407(1–2):174–178CrossRefGoogle Scholar
  113. 113.
    Vujevic D, Koprivanac N, Bozic AL, Locke BR (2004) The removal of direct orange 39 by pulsed corona discharge from model wastewater. Environ Technol 25(7):791–800CrossRefGoogle Scholar
  114. 114.
    Bozic AL, Koprivanac N, Sunka P, Clupek M, Babicky V (2004) Organic synthetic dye degradation by modified pinhole discharge. Czech J Phys 54:C958–C963CrossRefGoogle Scholar
  115. 115.
    Maehara T, Miyamoto I, Kurokawa K, Hashimoto Y, Iwamae A, Kuramoto M, Yamashita H, Mukasa S, Toyota H, Nomura S, Kawashima A (2008) Degradation of methylene blue by RF plasma in water. Plasma Chem Plasma Process 28(4):467–482CrossRefGoogle Scholar
  116. 116.
    Stara Z, Krcma F, Nejezchleb M, Skalny JD (2008) Influence of solution composition and chemical structure of dye on removal of organic dye by DC diaphragm discharge in water solutions. J Adv Oxid Technol 11(1):155–162Google Scholar
  117. 117.
    Stara Z, Krcma F, Nejezchleb M, Skalny JD (2009) Organic dye decomposition by DC diaphragm discharge in water: effect of solution properties on dye removal. Desalination 239(1–3):283–294CrossRefGoogle Scholar
  118. 118.
    Xiaoqiong W, Ming W, Zhenfeng D, Guishi L (2012) Decoloration of azo dye sunset yellow by a coaxial insulated-rod-to-cylinder underwater streamer discharge system. Plasma Sci Technol 14(4):293CrossRefGoogle Scholar
  119. 119.
    Kunitomo S, Bing S (2001) Removal of phenol in water by pulsed high voltage discharge. PPPS-2001: pulsed power plasma science 2001, vols I and Ii, Digest of Technical Papers 1138–1141Google Scholar
  120. 120.
    Kunitomo S, Ohbo T, Sun B (2003) The effects of using various types of pulsed discharge reactors for phenol removal in waste water. J Adv Oxid Technol 6(1):70–74Google Scholar
  121. 121.
    Lukes P, Clupek M, Sunka P, Babicky V, Janda V (2002) Effect of ceramic composition on pulse discharge induced processes in water using ceramic-coated wire to cylinder electrode system. Czech J Phys 52:800–806Google Scholar
  122. 122.
    Lukes P, Clupek M, Babicky V, Sunka P, Winterova G, Janda V (2003) Non-thermal plasma induced decomposition of 2-chlorophenol in water. Acta Phys Slovaca 53(6):423–428Google Scholar
  123. 123.
    Dang TH, Denat A, Lesaint O, Teissedre G (2008) Degradation of organic molecules by streamer discharges in water: coupled electrical and chemical measurements. Plasma Sour Sci Technol 17(2):024013–024021Google Scholar
  124. 124.
    Sugiarto AT, Sato M, Ohshima T, Skalny JD (2002) Characteristics of ring-to-cylinder type electrode system on pulsed discharge in water. J Adv Oxid Technol 5(2):211–216Google Scholar
  125. 125.
    Mizeraczyk J, Dors M, Metel E (2006) Phenol degradation in water by pulsed streamer discharge and Fenton reaction. Prog Green Oxid /Reduct Technol 162–166Google Scholar
  126. 126.
    Lukes P, Locke BR (2005) Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor. J Phys D Appl Phys 38(22):4074–4081CrossRefGoogle Scholar
  127. 127.
    Esplugas S, Giménez J, Contreras S, Pascual E, Rodríguez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36(4):1034–1042CrossRefGoogle Scholar
  128. 128.
    Tothova I, Lukes P, Clupek M, Babicky V, Janda V (2009) Removal of nonylphenol by pulsed corona discharge in water. In: 19th international symposium on plasma chemistry, Bochum, July 26–31, 2009Google Scholar
  129. 129.
    Bian WJ, Song XH, Liu DQ, Zhang J, Chen XH (2011) The intermediate products in the degradation of 4-chlorophenol by pulsed high voltage discharge in water. J Hazard Mater 192(3):1330–1339CrossRefGoogle Scholar
  130. 130.
    Wen YZ, Jiang XZ (2001) Pulsed corona discharge-induced reactions of acetophenone in water. Plasma Chem Plasma Process 21(3):345–354CrossRefGoogle Scholar
  131. 131.
    Sahni M (2002) Degradation of trichloroethylene using a pulsed corona reactor: experiments and simulation. Florida State University, TallahasseeGoogle Scholar
  132. 132.
    Lee C, Lee Y, Yoon J (2006) Oxidative degradation of dimethylsulfoxide by locally concentrated hydroxyl radicals in streamer corona discharge process. Chemosphere 65(7):1163–1170CrossRefGoogle Scholar
  133. 133.
    Willberg DM, Lang PS, Hochemer RH, Kratel A, Hoffmann MR (1996) Degradation of 4-chlorophenol, 3,4-dichloroaniline, and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor. Environ Sci Technol 30(8):2526–2534CrossRefGoogle Scholar
  134. 134.
    Elovitz MS, von Gunten U, Kaiser HP (2000) Hydroxyl radical/ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity, and DOM properties. Ozone Sci Eng 22(2):123–150CrossRefGoogle Scholar
  135. 135.
    Lee Y, Lee C, Yoon J (2003) High temperature dependence of 2,4-dichlorophenoxyacetic acid degradation by Fe(3+)/H2O2 system. Chemosphere 51(9):963–971CrossRefGoogle Scholar
  136. 136.
    Suslick KS, Didenko Y, Fang MM, Hyeon T, Kolbeck KJ, McNamara WB, Mdleleni MM, Wong M (1999) Acoustic cavitation and its chemical consequences. Philos Trans R Soc Lond Ser A-Math Phys Eng Sci 357(1751):335–353CrossRefGoogle Scholar
  137. 137.
    Koprivanac N, Kusic H, Vujevic D, Peternel I, Locke BR (2005) Influence of iron on degradation of organic dyes in corona. J Hazard Mater 117(2–3):113–119CrossRefGoogle Scholar
  138. 138.
    Grymonpré DR, Sharma AK, Finney WC, Locke BR (2001) The role of Fenton’s reaction in aqueous phase pulsed streamer corona reactors. Chem Eng J 82(1–3):189–207CrossRefGoogle Scholar
  139. 139.
    Sun B, Sato M, Clements JS (2000) Oxidative processes occurring when pulsed high voltage discharges degrade phenol in aqueous solution. Environ Sci Technol 34(3):509–513CrossRefGoogle Scholar
  140. 140.
    Sugiarto AT, Sato M (2001) Pulsed plasma processing of organic compounds in aqueous solution. Thin Solid Films 386(2):295–299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringOld Dominion UniversityNorfolkUSA
  2. 2.Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations