Plasma Chemistry and Plasma Processing

, Volume 33, Issue 1, pp 271–279 | Cite as

Study of the Production of Hydrogen and Light Hydrocarbons by Spark Discharges in Diesel, Kerosene, Gasoline, and Methane

  • Muhammad Arif Malik
  • David Hughes
  • Areej Malik
  • Shu Xiao
  • Karl H. Schoenbach
Original Paper

Abstract

Reforming liquid fuels into hydrogen and light hydrocarbons is desirable for improving the combustion characteristics of the fuels and the production of reducing agents for applications such as the removal of nitrogen oxides. In this study, diesel, kerosene, gasoline and methane were reformed by spark discharges between needle and plate electrodes at room temperature and atmospheric pressure. The gaseous products from liquid fuels comprised 65–70 % hydrogen and 30–35 % light hydrocarbons having two carbon atoms per molecule (i.e., C2s), or three carbon atoms per molecule (i.e., C3s). The product gases were 90 % hydrogen and 10 % C2s in the case of methane reforming. The energy efficiency for the production of gaseous products was highest in the case of gasoline at 3.8 mol/kWh, followed by kerosene, diesel and methane at 3.2, 3.0, and 2.4 mol/kWh, respectively. These results were found to be comparable to those reported by others for the reforming of pure hydrocarbons by plasmas in liquids. The liquid fuels turned black due to the formation of carbonaceous products, some of which could be filtered out as solid carbon particles, but others remained dissolved and imparted color to the treated liquid.

Keywords

Spark discharges Reforming Diesel Kerosene Gasoline Methane Non-equilibrium plasma Hydrogen 

References

  1. 1.
    Petitpas G, Rollier JD, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L (2007) Int J Hydrogen Energy 32:2848–2867CrossRefGoogle Scholar
  2. 2.
    Horng RF, Wen CS, Liauh CT, Chao Y, Huang CT (2008) Int J Hydrogen Energy 33:7619–7629CrossRefGoogle Scholar
  3. 3.
    Cohn DR, Rabinovich A, Titus CH, Bromberg L (1997) Int J Hydrogen Energy 22(7):715–723CrossRefGoogle Scholar
  4. 4.
    Nikipelov A, Correale G, Rakitin A, Pancheshnyi S, Popov I, Starikovskii A, Boot M (2011) SAE Technical Paper 2011-24-0088. doi:10.4271/2011-24-0088
  5. 5.
    Zhdanok SA, Vasilev GM, Vasetskii VA, Khavets AVJ (2005) Eng Phys Thermophy 78(1):179–181Google Scholar
  6. 6.
    Chao Y, Lee HM, Chen SH, Chang MB (2009) Int J Hydrogen Energy 34:6271–6279CrossRefGoogle Scholar
  7. 7.
    Kim TS, Song S, Chun KM, Lee SH (2001) Energy 35:2734–2743CrossRefGoogle Scholar
  8. 8.
    Rosocha LA, Kim Y, Anderson GK, Lee JO, Abbate S (2006) IEEE Trans Plasma Sci 34(6):2526–2531CrossRefGoogle Scholar
  9. 9.
    Rosocha LA, Coates DM, Platts D, Stange S (2004) Phys Plasmas 11(5):2950–2956CrossRefGoogle Scholar
  10. 10.
    Odeyemi F, Pekker M, Rabinovich A, Fridman AA, Heon M, Mochalin VN, Gogotsi Y (2012) IEEE Trans Plasma Sci 40(5):1362–1370CrossRefGoogle Scholar
  11. 11.
    Fisher KB, Thagard SM (2012) Plasma Chem Plasma Process 32:919–993CrossRefGoogle Scholar
  12. 12.
    Nomura S, Putra AEE, Mukasa S, Yamashita H, Toyota H (2011) Appl Phys Express 4:066201CrossRefGoogle Scholar
  13. 13.
    Kroushawi F, Latifi H, Hosseini SH, Peysokhan M, Nikbakht H, Silani Y, Ghomi H (2012) Plasma Chem Plasma Process 32:959–968CrossRefGoogle Scholar
  14. 14.
    Yan B, Xu P, Li X, Guo C Y, Jin Y, Cheng Y (2012) Plasma Chem Plasma Process 32:1203–1214Google Scholar
  15. 15.
    Czernichowski A, Czernichowski M, Czernichowski P (2003) 1st Europ. Hydrogen Energ. Conf. (EHEC), Grenoble, France. http://albin.czernichowski.pagesperso-orange.fr/ECP/CP1%2064%20Diesel%20paper.pdf. Accessed 15 Nov 2012
  16. 16.
    Xing Y, Liu Z, Couttenye RA, Willis WS, Suib SL, Fanson PT, Hirata H, Ibe M (2008) J Catal 253:28–36CrossRefGoogle Scholar
  17. 17.
    Matsui Y, Kawakami S, Takashima K, Katsura S, Mizuno A (2005) Energy Fuel 19:1561–1565CrossRefGoogle Scholar
  18. 18.
    Thagard SM, Prieto G, Takashima K, Mizuno A (2012) IEEE Trans Plasma Sci 40(9):2106–2111CrossRefGoogle Scholar
  19. 19.
    Nomura S, Toyota H, Tawara M, Yamashita H, Matsumoto K (2006) Appl Phys Lett 88:231502CrossRefGoogle Scholar
  20. 20.
    Sekine Y, Furukawa N, Matsukata M, Kikuchi E (2011) J Phys D Appl Phys 44:274004CrossRefGoogle Scholar
  21. 21.
    Gallagher MJ, Geiger R, Polevich A, Rabinovich A, Gutsol A, Fridman A (2010) Fuel 89:1187–1192CrossRefGoogle Scholar
  22. 22.
    Malik MA, Ahmed MJ (2008) Electrostat 66:574–577CrossRefGoogle Scholar
  23. 23.
    Rollier JD, Gonzalez-Aguilar J, Petitpas G, Darmon A, Fulcheri L, Metkemeijer R (2008) Energy Fuel 22:556–560CrossRefGoogle Scholar
  24. 24.
    Zhu X, Hoang T, Lobban LL, Mallinson RGJ (2011) Phys D Appl Phys 44:274002CrossRefGoogle Scholar
  25. 25.
    Jahanmiri A, Rahimpour MR, Shirazi MM, Hooshmand N, Taghvaei H (2012) Chem Eng J 191:416–425CrossRefGoogle Scholar
  26. 26.
    Rusanov AVD, Babaritskii AI, Baranov IE, Bibikov MB, Deminskii MA, Demkin SA, Zhivotov VK, Konovalov GM, Lysov GV, Moskovskii AS, Potapkin BV, Smirnov RV, Chebankov FN (2004) Dokl Chem 395(2):82–85CrossRefGoogle Scholar
  27. 27.
    Kuskova NI, Malyushevskaya AP, Petrichenko SV, Yushchishchina AN (2011) Surf Eng Appl Elect 47(5):446–449CrossRefGoogle Scholar
  28. 28.
    Hartvigsen J, Elangovan S, Hollist M, Czernichowski P, Frost L (2011) ECS Trans 35(1):2825–2833CrossRefGoogle Scholar
  29. 29.
    Lee DH, Lee JO, Kim KT, Song YH, Kim E, Han HS (2011) Int J Hydrogen Energy 36:11718–11726CrossRefGoogle Scholar
  30. 30.
    Park C, Kim C, Kim K, Lee D, Song Y, Moriyoshi Y (2010) Int J Hydrogen Energy 35:1789–1796CrossRefGoogle Scholar
  31. 31.
    Cho BK, Lee JH, Crellin CC, Olson KL, Hilden DL, Kim MK, Kim PS, Heo I, Oh SH, Nam IS (2012) Catal Today 191:20–24CrossRefGoogle Scholar
  32. 32.
    Lebouvier A, Fresnet F, Fabry F, Boch V, Rohani V, Cauneau F, Fulcheri L (2011) Energy Fuel 25:1034–1044CrossRefGoogle Scholar
  33. 33.
    Huseo J, Rico V, Cotrino J, Jimenes-Mateos JM, Gonzalez-Elipe AR (2009) Environ Sci Technol 43:2557–2562CrossRefGoogle Scholar
  34. 34.
    Messerle VE, Karpenko EI, Ustimenko AB, Lavrichshev OA (2012) Fuel Process Technol. doi:10.1016/j.fuproc.2012.07.001
  35. 35.
    Xiao S, Kolb JF, Malik MA, Lu X, Laroussi M, Joshi RP, Schamiloglu E, Schoenbach KH (2006) IEEE Trans Plasma Sci 34(5):1653–1661CrossRefGoogle Scholar
  36. 36.
    Schoenbach KH, Kolb JF, Xiao S, Katsuki S, Minamitani Y, Joshi R (2008) Plasma Sour Sci Technol 17:024010CrossRefGoogle Scholar
  37. 37.
    Lide DR (ed) (2005) CRC Handbook of Chemistry and Physics, Internet Version 2005. http://www.hbcpnetbase.com. CRC Press, Boca Raton
  38. 38.
    Kuskova NI, Yushchishina AN, Malyushevskaya AP, Tsolin PL, Petrichenko LA, Smalko AA (2010) Surf Eng Appl Elect 46(2):149–153CrossRefGoogle Scholar
  39. 39.
    Yang Y (2002) Ind Eng Chem Res 41:5918–5926CrossRefGoogle Scholar
  40. 40.
    Nomura S, Toyota H, Mukasa S, Yamashita H, Maehara T, Kawashima AJ (2009) Appl Phys 106:073306CrossRefGoogle Scholar
  41. 41.
    Raizer YP (1991) Gas discharge physics. Springer, Berlin, p 344CrossRefGoogle Scholar
  42. 42.
    Lee DH, Kim KT, Song YH, Kang WS, Jo S (2012) Plasma Chem Plasma Process. doi:10.1007/s11090-012-9407-7
  43. 43.
    Billaud FG, Baronnet F, Gueret CP (1993) Ind Eng Chem Res 32(8):1549–1554CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Muhammad Arif Malik
    • 1
  • David Hughes
    • 2
  • Areej Malik
    • 3
  • Shu Xiao
    • 1
  • Karl H. Schoenbach
    • 1
  1. 1.Frank Reidy Research Center for BioelectricsOld Dominion UniversityNorfolkUSA
  2. 2.The Math and Science AcademyOcean Lakes High SchoolVirginia BeachUSA
  3. 3.Granby High SchoolNorfolkUSA

Personalised recommendations